ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of eigenvalues of quantum graphs with respect to magnetic perturbation and the nodal count of the eigenfunctions

140   0   0.0 ( 0 )
 نشر من قبل Gregory Berkolaiko
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove an analogue of the magnetic nodal theorem on quantum graphs: the number of zeros $phi$ of the $n$-th eigenfunction of the Schrodinger operator on a quantum graph is related to the stability of the $n$-th eigenvalue of the perturbation of the operator by magnetic potential. More precisely, we consider the $n$-th eigenvalue as a function of the magnetic perturbation and show that its Morse index at zero magnetic field is equal to $phi - (n-1)$.



قيم البحث

اقرأ أيضاً

We provide a purely variational proof of the existence of eigenvalues below the bottom of the essential spectrum for the Schrodinger operator with an attractive $delta$-potential supported by a star graph, i.e. by a finite union of rays emanating fro m the same point. In contrast to the previous works, the construction is valid without any additional assumption on the number or the relative position of the rays. The approach is used to obtain an upper bound for the lowest eigenvalue.
An eigenfunction of the Laplacian on a metric (quantum) graph has an excess number of zeros due to the graphs non-trivial topology. This number, called the nodal surplus, is an integer between 0 and the graphs first Betti number $beta$. We study the distribution of the nodal surplus values in the countably infinite set of the graphs eigenfunctions. We conjecture that this distribution converges to Gaussian for any sequence of graphs of growing $beta$. We prove this conjecture for several special graph sequences and test it numerically for a variety of well-known graph families. Accurate computation of the distribution is made possible by a formula expressing the nodal surplus distribution as an integral over a high-dimensional torus.
We prove that after an arbitrarily small adjustment of edge lengths, the spectrum of a compact quantum graph with $delta$-type vertex conditions can be simple. We also show that the eigenfunctions, with the exception of those living entirely on a loo ping edge, can be made to be non-vanishing on all vertices of the graph. As an application of the above result, we establish that the secular manifold (also called determinant manifold) of a large family of graphs has exactly two smooth connected components.
The main motivation of this article is to derive sufficient conditions for dynamical stability of periodically driven quantum systems described by a Hamiltonian H(t), i.e., conditions under which it holds sup_{t in R} | (psi(t),H(t) psi(t)) |<infty w here psi(t) denotes a trajectory at time t of the quantum system under consideration. We start from an analysis of the domain of the quasi-energy operator. Next we show, under certain assumptions, that if the spectrum of the monodromy operator U(T,0) is pure point then there exists a dense subspace of initial conditions for which the mean value of energy is uniformly bounded in the course of time. Further we show that if the propagator admits a differentiable Floquet decomposition then || H(t) psi(t) || is bounded in time for any initial condition psi(0), and one employs the quantum KAM algorithm to prove the existence of this type of decomposition for a fairly large class of H(t). In addition, we derive bounds uniform in time on transition probabilities between different energy levels, and we also propose an extension of this approach to the case of a higher order of differentiability of the Floquet decomposition. The procedure is demonstrated on a solvable example of the periodically time-dependent harmonic oscillator.
81 - Gregory Berkolaiko 2016
We describe some basic tools in the spectral theory of Schrodinger operator on metric graphs (also known as quantum graph) by studying in detail some basic examples. The exposition is kept as elementary and accessible as possible. In the later sectio ns we apply these tools to prove some results on the count of zeros of the eigenfunctions of quantum graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا