ﻻ يوجد ملخص باللغة العربية
Heterodyne receivers register the sky signal on either a circular polarization basis (where it is split into left-hand and right-hand circular polarization) or a linear polarization basis (where it is split into horizontal and vertical linear polarization). We study the problem of interferometric observations performed with telescopes that observe on different polarization bases, hence producing visibilities that we call mixed basis (i.e., linear in one telescope and circular in the other). We present novel algorithms for the proper calibration and treatment of such interferometric observations and test our algorithms with both simulations and real data. The use of our algorithms will be important for the optimum calibration of forthcoming observations with the Atacama Large mm/submm Array (ALMA) in very-long-baseline interferometry (VLBI) mode. Our algorithms will also allow us to optimally calibrate future VLBI observations at very high data rates (i.e., wide bandwidths), where linear-polarization feeds will be preferable at some stations, to overcome the polarimetric limitations due to the use of quarter-wave plates.
We report the development of a semi-automatic pipeline for the calibration of 86 GHz full-polarization observations performed with the Global Millimeter-VLBI array (GMVA) and describe the calibration strategy followed in the data reduction. Our calib
New and upcoming radio interferometers will produce unprecedented amounts of data that demand extremely powerful computers for processing. This is a limiting factor due to the large computational power and energy costs involved. Such limitations rest
The detection of the primordial $B$-mode spectrum of the polarized cosmic microwave background (CMB) signal may provide a probe of inflation. However, observation of such a faint signal requires excellent control of systematic errors. Interferometry
Calibration of radio interferometric observations becomes increasingly difficult towards lower frequencies. Below ~300 MHz, spatially variant refractions and propagation delays of radio waves traveling through the ionosphere cause phase rotations tha
The daytime sky has been recently demonstrated as a useful calibration tool for deriving polarization cross-talk properties of large astronomical telescopes. The Daniel K Inouye Solar Telescope (DKIST) and other large telescopes under construction ca