ﻻ يوجد ملخص باللغة العربية
This paper presents a performance-regulation method for a class of stochastic timed event-driven systems aimed at output tracking of a given reference setpoint. The systems are either Discrete Event Dynamic Systems (DEDS) such as queueing networks or Petri nets, or Hybrid Systems (HS) with time-driven dynamics and event-driven dynamics, like fluid queues and hybrid Petri nets. The regulator, designed for simplicity and speed of computation, is comprised of a single integrator having a variable gain to ensure effective tracking under time-varying plants. The gains computation is based on the Infinitesimal Perturbation Analysis (IPA) gradient of the plant function with respect to the control variable, and the resultant tracking can be quite robust with respect to modeling inaccuracies and gradient-estimation errors. The proposed technique is tested on examples taken from various application areas and modeled with different formalisms, including queueing models, Petri-net model of a production-inventory control system, and a stochastic DEDS model of a multicore chip control. Simulation results are presented in support of the proposed approach.
This paper presents a new approach to congestion management at traffic-light intersections. The approach is based on controlling the relative lengths of red/green cycles in order to have the congestion level track a given reference. It uses an integr
We present a flow-control technique in traffic-light intersections, aiming at regulating queue lengths to given reference setpoints. The technique is based on multivariable integrators with adaptive gains, computed at each control cycle by assessing
This paper proposes a data-driven framework to solve time-varying optimization problems associated with unknown linear dynamical systems. Making online control decisions to regulate a dynamical system to the solution of an optimization problem is a c
This paper presents a new method for solving a class of nonlinear optimal control problems with a quadratic performance index. In this method, first the original optimal control problem is transformed into a nonlinear two-point boundary value problem
This paper proposes a novel framework for resource-aware control design termed performance-barrier-based triggering. Given a feedback policy, along with a Lyapunov function certificate that guarantees its correctness, we examine the problem of design