ﻻ يوجد ملخص باللغة العربية
This paper proposes a data-driven framework to solve time-varying optimization problems associated with unknown linear dynamical systems. Making online control decisions to regulate a dynamical system to the solution of an optimization problem is a central goal in many modern engineering applications. Yet, the available methods critically rely on a precise knowledge of the system dynamics, thus mandating a preliminary system identification phase before a controller can be designed. In this work, we leverage results from behavioral theory to show that the steady-state transfer function of a linear system can be computed from data samples without any knowledge or estimation of the system model. We then use this data-driven representation to design a controller, inspired by a gradient-descent optimization method, that regulates the system to the solution of a convex optimization problem, without requiring any knowledge of the time-varying disturbances affecting the model equation. Results are tailored to cost functions satisfy the Polyak-L ojasiewicz inequality.
This paper proposes a data-driven control framework to regulate an unknown, stochastic linear dynamical system to the solution of a (stochastic) convex optimization problem. Despite the centrality of this problem, most of the available methods critic
This paper considers the cooperative output regulation problem for linear multi-agent systems with a directed communication graph, heterogeneous linear subsystems, and an exosystem whose output is available to only a subset of subsystems. Both the ca
This article treats three problems of sparse and optimal multiplexing a finite ensemble of linear control systems. Given an ensemble of linear control systems, multiplexing of the controllers consists of an algorithm that selects, at each time (t), o
We study safe, data-driven control of (Markov) jump linear systems with unknown transition probabilities, where both the discrete mode and the continuous state are to be inferred from output measurements. To this end, we develop a receding horizon es
We consider optimization problems for (networked) systems, where we minimize a cost that includes a known time-varying function associated with the systems outputs and an unknown function of the inputs. We focus on a data-based online projected gradi