ﻻ يوجد ملخص باللغة العربية
Following a methodology similar to cite{Alishahiha:2015rta}, we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors) with backreactions. Applying a perturbation method proposed by Kanno in Ref. cite{kanno}, we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase ($T>T_c$) to the superconductor phase ($T<T_c$), the holographic complexity will be divergent.
We study holographic subregion complexity, and its possible connection to purification complexity suggested recently by Agon et al. In particular, we study the conjecture that subregion complexity is the purification complexity by considering hologra
We study the behavior of holographic entanglement entropy (HEE) for imbalanced holographic superconductors. We employ a numerical approach to consider the robust case of fully back-reacted gravity system. The hairy black hole solution is found by usi
Quantum complexity of a thermofield double state in a strongly coupled quantum field theory has been argued to be holographically related to the action evaluated on the Wheeler-DeWitt patch. The growth rate of quantum complexity in systems dual to Ei
We study the holographic complexity conjectures for rotating black holes, uncovering a relationship between the complexity of formation and the thermodynamic volume of the black hole. We suggest that it is the thermodynamic volume and not the entropy
We investigate general features of the evolution of holographic subregion complexity (HSC) on Vaidya-AdS metric with a general form. The spacetime is dual to a sudden quench process in quantum system and HSC is a measure of the ``difference between t