ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of X-ray Emission from the Galactic Supernova Remnant G32.8-0.1 with Suzaku

104   0   0.0 ( 0 )
 نشر من قبل Aya Bamba
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Aya Bamba




اسأل ChatGPT حول البحث

We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT ~ 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high temperature (kT ~ 3.4 keV) component with a very low ionization timescale (~ 2.7e9 cm^{-3}s), or a hard non-thermal component with a photon index Gamma~2.3. The average density of the low-temperature plasma is rather low, of the order of 10^{-3}--10^{-2} cm^{-3}, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.



قيم البحث

اقرأ أيضاً

We report here on the first detection at X-ray wavelengths of the Supernova Remnant (SNR) G337.8-0.1, carried out with the XMM-Newton Observatory. Using the X-ray observations, we studied the X-ray morphology of the remnant at different energy ranges , analysed the spectral properties and investigated a possible variable behavior. The SNR shows a diffuse filled-center structure in the X-ray region with an absence of a compact source in its center. We find a high column density of N_H > 6.9 * 10^{22} cm^{-2}, which supports a relatively distant location (d > 7 kpc). The X-ray spectrum exhibits emission lines, indicating that the X-ray emission has a thin thermal plasma origin, and is well represented by a non-equilibrium ionization (NEI) plasma model. The X-ray characteristics and well-known radio parameters show that G337.8-0.1 belongs to the emerging class of mixed-morphology (MM) SNRs.
151 - V. A. Acciari , E. Aliu , T. Arlen 2011
We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tychos supernova remnant. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak e mission coming from the direction of the remnant, compatible with a point source located at $00^{rm h} 25^{rm m} 27.0^{rm s}, +64^{circ} 10^{prime} 50^{primeprime}$ (J2000). The TeV photon spectrum measured by VERITAS can be described with a power-law $dN/dE = C(E/3.42;textrm{TeV})^{-Gamma}$ with $Gamma = 1.95 pm 0.51_{stat} pm 0.30_{sys}$ and $C = (1.55 pm 0.43_{stat} pm 0.47_{sys}) times 10^{-14}$ cm$^{-2}$s$^{-1}$TeV$^{-1}$. The integral flux above 1 TeV corresponds to $sim 0.9%$ percent of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models which can describe the data. The lowest magnetic field allowed in these models is $sim 80 mu$G, which may be interpreted as evidence for magnetic field amplification.
There are either a near kinematic distance of 5.5 kpc or a far distance of 8.8 kpc for a Galactic supernova remnant (SNR) G32.8$-$0.1 derived by using the rotation curve of the Galaxy. Here we make sure that the remnant distance is the farther one 8. 8 kpc through solving a group of equations for the shell-type remnants separately at the adiabatic-phase and the radiative-phase. For SNR G346.6$-$0.2 we determine its distance also the farther one 11 kpc rather than the nearer one 5.5 kpc.
Deep optical CCD images of the supernova remnant G 32.8-0.1 were obtained where filamentary and diffuse emission was discovered. The images were acquired in the emission lines of Halpha+[N II] and [S II]. Filamentary and diffuse structures are detect ed in most areas of the remnant, while no significant [O III] emission is present. The flux-calibrated images suggest that the optical emission originates from shock-heated gas since the [S II]/Halpha ratio is greater than 1.2. The Spitzer images at 8 micron and 24 micron show a few filamentary structures to be correlated with the optical filaments, while the radio emission at 1.4 GHz in the same area is found to be very well correlated with the brightest optical filaments. Furthermore, the results from deep long-slit spectra also support the origin of the emission to be from shock-heated gas ([S II]/Halpha > 1.5). The absence of [O III] emission indicates slow shocks velocities into the interstellar clouds (< 100 km/s), while the [S II] 6716/6731 ratio indicates electron densities up to ~200 cm^{-3}. Finally, the Halpha emission is measured to lie between 1.8 to 4.6 x 10^{-17} erg/s/cm^2/arcsec^2, while from VGPS HI images a distance to the SNR is estimated to be between 6 to 8.5 kpc.
We present the results of a spectral analysis of the central region of the mixed-morphology supernova remnant HB 9. A prior Ginga observation of this source detected a hard X-ray component above 4 keV and the origin of this particular X-ray component is still unknown. Our results demonstrate that the extracted X-ray spectra are best represented by a model consisting of a collisional ionization equilibrium plasma with a temperature of ~0.1-0.2 keV (interstellar matter component) and an ionizing plasma with a temperature of ~0.6-0.7 keV and an ionization timescale of >1 x 10^{11} cm^{-3} s (ejecta component). No significant X-ray emission was found in the central region above 4 keV. The recombining plasma model reported by a previous work does not explain our spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا