ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of TeV Gamma Ray Emission from Tychos Supernova Remnant

151   0   0.0 ( 0 )
 نشر من قبل Scott P. Wakely
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of TeV gamma-ray emission from the Type Ia supernova remnant (SNR) G120.1+1.4, known as Tychos supernova remnant. Observations performed in the period 2008-2010 with the VERITAS ground-based gamma-ray observatory reveal weak emission coming from the direction of the remnant, compatible with a point source located at $00^{rm h} 25^{rm m} 27.0^{rm s}, +64^{circ} 10^{prime} 50^{primeprime}$ (J2000). The TeV photon spectrum measured by VERITAS can be described with a power-law $dN/dE = C(E/3.42;textrm{TeV})^{-Gamma}$ with $Gamma = 1.95 pm 0.51_{stat} pm 0.30_{sys}$ and $C = (1.55 pm 0.43_{stat} pm 0.47_{sys}) times 10^{-14}$ cm$^{-2}$s$^{-1}$TeV$^{-1}$. The integral flux above 1 TeV corresponds to $sim 0.9%$ percent of the steady Crab Nebula emission above the same energy, making it one of the weakest sources yet detected in TeV gamma rays. We present both leptonic and hadronic models which can describe the data. The lowest magnetic field allowed in these models is $sim 80 mu$G, which may be interpreted as evidence for magnetic field amplification.



قيم البحث

اقرأ أيضاً

309 - Xiao Zhang 2012
Hadronic gamma-ray emission from supernova remnants (SNRs) is an important tool to test shock acceleration of cosmic ray protons. Tycho is one of nearly a dozen Galactic SNRs which are suggested to emit hadronic gamma-ray emission. Among them, howeve r, it is the only one in which the hadronic emission is proposed to arise from the interaction with low-density (~0.3 cm^{-3}) ambient medium. Here we present an alternative hadronic explanation with a modest conversion efficiency (of order 1%) for this young remnant. With such an efficiency, a normal electron-proton ratio (of order 10^{-2}) is derived from the radio and X-ray synchrotron spectra and an average ambient density that is at least one-order-of-magnitude higher is derived from the hadronic gamma-ray flux. This result is consistent with the multi-band evidence of the presence of dense medium from the north to the east of the Tycho SNR. The SNR-cloud association, in combination with the HI absorption data, helps to constrain the so-far controversial distance to Tycho and leads to an estimate of 2.5 kpc.
We report the discovery of an unidentified, extended source of very-high-energy (VHE) gamma-ray emission, VER J2019+407, within the radio shell of the supernova remnant SNR G78.2+2.1, using 21.4 hours of data taken by the VERITAS gamma-ray observator y in 2009. These data confirm the preliminary indications of gamma-ray emission previously seen in a two-year (2007-2009) blind survey of the Cygnus region by VERITAS. VER J2019+407, which is detected at a post-trials significance of 7.5 standard deviations in the 2009 data, is localized to the northwestern rim of the remnant in a region of enhanced radio and X-ray emission. It has an intrinsic extent of 0.23^{circ} pm 0.03^{circ} (stat)+0.04^{circ}_{-0.02}^{circ}(sys) and its spectrum is well-characterized by a differential power law (dN/dE = N_0 times (E/TeV)^{-Gamma}) with a photon index of {Gamma} = 2.37 pm 0.14 (stat) pm 0.20 (sys) and a flux normalization of N0 = 1.5 pm 0.2 (stat) pm 0.4(sys) times 10^-12 ph TeV^{-1} cm^{-2} s^{-1}. This yields an integral flux of 5.2 pm 0.8 (stat) pm 1.4 (sys) times 10^-12 ph cm^{-2} s^{-1} above 320 GeV, corresponding to 3.7% of the Crab Nebula flux. We consider the relationship of the TeV gamma-ray emission with the GeV gamma-ray emission seen from SNR G78.2+2.1 as well as that seen from a nearby cocoon of freshly accelerated cosmic rays. Multiple scenarios are considered as possible origins for the TeV gamma-ray emission, including hadronic particle acceleration at the supernova remnant shock.
SNR G24.7+0.6 is a 9.5 kyrs radio and $gamma$-ray supernova remnant evolving in a dense medium. In the GeV regime, SNR G24.7+0.6 (3FHL,J1834.1--0706e/FGES,J1834.1--0706) shows a hard spectral index ($Gamma$$sim$2) up to $200$,GeV, which makes it a go od candidate to be observed with Cherenkov telescopes such as MAGIC. We observed the field of view of snr with the MAGIC telescopes for a total of 31 hours. We detect very high energy $gamma$-ray emission from an extended source located 0.34degr away from the center of the radio SNR. The new source, named mgc is detected up to 5,TeV, and its spectrum is well-represented by a power-law function with spectral index of $2.74 pm 0.08$. The complexity of the region makes the identification of the origin of the very-high energy emission difficult, however the spectral agreement with the LAT source and overlapping position at less than 1.5$sigma$ point to a common origin. We analysed 8 years of fermi-LAT data to extend the spectrum of the source down to 60,MeV. fermi-LAT and MAGIC spectra overlap within errors and the global broad band spectrum is described by a power-law with exponential cutoff at $1.9pm0.5$,TeV. The detected $gamma$-ray emission can be interpreted as the results of proton-proton interaction between the supernova and the CO-rich surrounding.
157 - Satoru Katsuda 2010
We present X-ray proper-motion measurements of the forward shock and reverse-shocked ejecta in Tychos supernova remnant, based on three sets of archival Chandra data taken in 2000, 2003, and 2007. We find that the proper motion of the edge of the rem nant (i.e., the forward shock and protruding ejecta knots) varies from 0.20 yr^{-1} (expansion index m=0.33, where R = t^m) to 0.40 yr^{-1} (m=0.65) with azimuthal angle in 2000-2007 measurements, and 0.14 yr^{-1} (m=0.26) to 0.40 yr^{-1} (m=0.65) in 2003-2007 measurements. The azimuthal variation of the proper motion and the average expansion index of ~0.5 are consistent with those derived from radio observations. We also find proper motion and expansion index of the reverse-shocked ejecta to be 0.21-0.31 yr^{-1} and 0.43-0.64, respectively. From a comparison of the measured m-value with Type Ia supernova evolutionary models, we find a pre-shock ambient density around the remnant of <~0.2 cm^{-3}.
202 - A. Abdo 2010
We report on the first detection of GeV high-energy gamma-ray emission from a young supernova remnant with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope. These observations reveal a source with no discernible spatial extension d etected at a significance level of 12.2$sigma$ above 500 MeV at a location that is consistent with the position of the remnant of the supernova explosion that occurred around 1680 in the Cassiopeia constellation - Cassiopeia A. The gamma-ray flux and spectral shape of the source are consistent with a scenario in which the gamma-ray emission originates from relativistic particles accelerated in the shell of this remnant. The total content of cosmic rays (electrons and protons) accelerated in Cas A can be estimated as $W_{mathrm{CR}} approx (1-4) times 10^{49}$ erg thanks to the well-known density in the remnant assuming that the observed gamma-ray originates in the SNR shell(s). The magnetic field in the radio-emitting plasma can be robustly constrained as B $gt 0.1$ mG, providing new evidence of the magnetic field amplification at the forward shock and the strong field in the shocked ejecta.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا