ﻻ يوجد ملخص باللغة العربية
The $2$-cell embeddings of graphs on closed surfaces have been widely studied. It is well known that ($2$-cell) embedding a given graph $G$ on a closed orientable surface is equivalent to cyclically ordering the edges incident to each vertex of $G$. In this paper, we study the following problem: given a genus $g$ embedding $epsilon$ of the graph $G$ and a vertex of $G$, how many different ways of reembedding the vertex such that the resulting embedding $epsilon$ is of genus $g+Delta g$? We give formulas to compute this quantity and the local minimal genus achieved by reembedding. In the process we obtain miscellaneous results. In particular, if there exists a one-face embedding of $G$, then the probability of a random embedding of $G$ to be one-face is at least $prod_{ uin V(G)}frac{2}{deg( u)+2}$, where $deg( u)$ denotes the vertex degree of $ u$. Furthermore we obtain an easy-to-check necessary condition for a given embedding of $G$ to be an embedding of minimum genus.
The $2$-cell embeddings of graphs on closed surfaces have been widely studied. It is well known that ($2$-cell) embedding a given graph $G$ on a closed orientable surface is equivalent to cyclically ordering the edges incident to each vertex of $G$.
It is known that the cop number $c(G)$ of a connected graph $G$ can be bounded as a function of the genus of the graph $g(G)$. The best known bound, that $c(G) leq leftlfloor frac{3 g(G)}{2}rightrfloor + 3$, was given by Schr{o}der, who conjectured t
The first author together with Jenssen, Perkins and Roberts (2017) recently showed how local properties of the hard-core model on triangle-free graphs guarantee the existence of large independent sets, of size matching the best-known asymptotics due
The reconstruction conjecture has remained open for simple undirected graphs since it was suggested in 1941 by Kelly and Ulam. In an attempt to prove the conjecture, many graph invariants have been shown to be reconstructible from the vertex-deleted
Frankl and Furedi (1989) conjectured that the $r$-graph with $m$ edges formed by taking the first $m$ sets in the colex ordering of ${mathbb N}^{(r)}$ has the largest graph-Lagrangian of all $r$-graphs with $m$ edges. In this paper, we establish some