ﻻ يوجد ملخص باللغة العربية
The reconstruction conjecture has remained open for simple undirected graphs since it was suggested in 1941 by Kelly and Ulam. In an attempt to prove the conjecture, many graph invariants have been shown to be reconstructible from the vertex-deleted deck, and in particular, some prominent graph polynomials. Among these are the Tutte polynomial, the chromatic polynomial and the characteristic polynomial. We show that the interlace polynomial, the U -polynomial, the universal edge elimination polynomial xi and the colore
Graph polynomials are deemed useful if they give rise to algebraic characterizations of various graph properties, and their evaluations encode many other graph invariants. Algebraic: The complete graphs $K_n$ and the complete bipartite graphs $K_{n,n
It has recently been observed by Zuiddam that finite graphs form a preordered commutative semiring under the graph homomorphism preorder together with join and disjunctive product as addition and multiplication, respectively. This led to a new charac
The graph reconstruction conjecture asserts that every finite simple graph on at least three vertices can be reconstructed up to isomorphism from its deck - the collection of its vertex-deleted subgraphs. Kocays Lemma is an important tool in graph re
We consider 3 (weighted) posets associated with a graph G - the poset P(G) of distinct induced unlabelled subgraphs, the lattice Omega(G) of distinct unlabelled graphs induced by connected partitions, and the poset Q(G) of distinct unlabelled edge-su
Let $D=(V,A)$ be a digraphs without isolated vertices. A vertex-degree based invariant $I(D)$ related to a real function $varphi$ of $D$ is defined as a summation over all arcs, $I(D) = frac{1}{2}sum_{uvin A}{varphi(d_u^+,d_v^-)}$, where $d_u^+$ (res