ﻻ يوجد ملخص باللغة العربية
We investigate the modulation of optical phonons in semiconductor crystal by surface acoustic wave (SAW) propagating on the crystal surface. The SAW fields induce changes on the order of 10textsuperscript{-3} in the average Raman scattering intensity by optical phonons in Si and GaN crystals. The SAW-induced modifications in the Raman cross-section are dominated by the modulation of the optical phonon energy by the SAW strain field. In addition to this local contribution, the experiments give evidence for a weaker and non-local contribution arising from the spatial variation of the SAW strain field. The latter is attributed to the activation of optical modes with large wave vectors and, therefore, lower energies. The experimental results, which are well described by theoretical models for the two contributions, prove that optical phonons can be manipulated by SAWs with $mu$m wavelengths
Voltage induced magnetization dynamics of magnetic thin films is a valuable tool to study anisotropic fields, exchange couplings, magnetization damping and spin pumping mechanism. A particularly well established technique is the ferromagnetic resonan
We present a theoretical framework allowing to properly address the nature of surface-like eigenmodes in a hypersonic surface phononic crystal, a composite structure made of periodic metal stripes of nanometer size and periodicity of 1 micron, deposi
We report a negative resistance, namely, a voltage drop along the opposite direction of a current flow, in the superconducting gap of NbSe$_2$ thin films under the irradiation of surface acoustic waves (SAWs). The amplitude of the negative resistance
We report on the experimental observation of excitation and detection of parametric spin waves and spin currents in the bulk acoustic wave resonator. The hybrid resonator consists of ZnO piezoelectric film, yttrium iron garnet (YIG) films on gallium
Surface electromagnetic modes supported by metal surfaces have a great potential for uses in miniaturised detectors and optical circuits. For many applications these modes are excited locally. In the optical regime, Surface Plasmon Polaritons (SPPs)