ﻻ يوجد ملخص باللغة العربية
The introduction and control of ferromagnetism in graphene opens up a range of new directions for fundamental and applied studies. Several approaches have been pursued so far, such as introduction of defects, functionalization with adatoms, and shaping of graphene into nanoribbons with well-defined zigzag edges. A more robust and less invasive method utilizes the introduction of an exchange interaction by a ferromagnetic insulator in proximity with graphene. Here we present a direct measurement of the exchange interaction in room temperature ferromagnetic graphene. We study the spin transport in exfoliated graphene on a yttrium-iron-garnet substrate where the observed spin precession clearly indicates the presence and strength of an exchange field that is an unambiguous evidence of induced ferromagnetism. We describe the results with a modified Bloch diffusion equation and extract an average exchange field of the order of 0.2 T. Further, we demonstrate that a proximity induced 2D ferromagnet can efficiently modulate a spin current by controlling the direction of the exchange field. These results can create a building block for magnetic-gate tuneable spin transport in one-atom-thick spintronic devices.
We prove a spontaneous magnetization of the oxygen-terminated ZnO (0001) surface by utilizing a multi-code, SIESTA and KKR, first-principles approach, involving both LSDA+U and selfinteraction corrections (SIC) to treat electron correlation effects.
We propose a way of making graphene superconductive by putting on it small superconductive islands which cover a tiny fraction of graphene area. We show that the critical temperature, T_c, can reach several Kelvins at the experimentally accessible ra
By exploiting proximity coupling, we probe the spin state of the surface layers of CrI3, a van der Waals magnetic semiconductor, by measuring the induced magnetoresistance (MR) of Pt in Pt/CrI3 nano-devices. We fabricate the devices with clean and st
We demonstrate a large enhancement of the spin accumulation in monolayer graphene following electron-beam induced deposition of an amorphous carbon layer at the ferromagnet-graphene interface. The enhancement is 10^4-fold when graphene is deposited o
The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states has led to the observation of new electronic transport phenomena such as anomalously quantized Hall effec