ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced spin accumulation at room temperature in graphene spin valves with amorphous carbon interfacial layers

245   0   0.0 ( 0 )
 نشر من قبل Juan F. Sierra
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a large enhancement of the spin accumulation in monolayer graphene following electron-beam induced deposition of an amorphous carbon layer at the ferromagnet-graphene interface. The enhancement is 10^4-fold when graphene is deposited onto poly(methyl metacrylate) (PMMA) and exposed with sufficient electron-beam dose to cross-link the PMMA, and 10^3-fold when graphene is deposited directly onto SiO2 and exposed with identical dose. We attribute the difference to a more efficient carbon deposition in the former case due to an increase in the presence of compounds containing carbon, which are released by the PMMA. The amorphous carbon interface can sustain very large current densities without degrading, which leads to very large spin accumulations exceeding 500 microeVs at room temperature.



قيم البحث

اقرأ أيضاً

We present inverted spin-valves fabricated from CVD-grown bilayer graphene (BLG) that show more than a doubling in device performance at room temperature compared to state-of-the art bilayer graphene spin-valves. This is made possible by a PDMS dropl et-assisted full-dry transfer technique that compensates for previous process drawbacks in device fabrication. Gate-dependent Hanle measurements show spin lifetimes of up to 5.8 ns and a spin diffusion length of up to 26 $mu$m at room temperature combined with a charge carrier mobility of $approx$ 24 000 cm$^{2}$(Vs)$^{-1}$ for the best device. Our results demonstrate that CVD-grown BLG shows equally good room temperature spin transport properties as both CVD-graphene and even exfoliated single-layer graphene.
The specific band structure of graphene, with its unique valley structure and Dirac neutrality point separating hole states from electron states has led to the observation of new electronic transport phenomena such as anomalously quantized Hall effec ts, absence of weak localization and the existence of a minimum conductivity. In addition to dissipative transport also supercurrent transport has already been observed. It has also been suggested that graphene might be a promising material for spintronics and related applications, such as the realization of spin qubits, due to the low intrinsic spin orbit interaction, as well as the low hyperfine interaction of the electron spins with the carbon nuclei. As a first step in the direction of graphene spintronics and spin qubits we report the observation of spin transport, as well as Larmor spin precession over micrometer long distances using single graphene layer based field effect transistors. The non-local spin valve geometry was used, employing four terminal contact geometries with ferromagnetic cobalt electrodes, which make contact to the graphene sheet through a thin oxide layer. We observe clear bipolar (changing from positive to negative sign) spin signals which reflect the magnetization direction of all 4 electrodes, indicating that spin coherence extends underneath all 4 contacts. No significant changes in the spin signals occur between 4.2K, 77K and room temperature. From Hanle type spin precession measurements we extract a spin relaxation length between 1.5 and 2 micron at room temperature, only weakly dependent on charge density, which is varied from n~0 at the Dirac neutrality point to n = 3.6 10^16/m^2. The spin polarization of the ferromagnetic contacts is calculated from the measurements to be around 10%.
134 - Y. Ando , Y. Maeda , K. Kasahara 2011
We demonstrate spin-accumulation signals controlled by the gate voltage in a metal-oxide-semiconductor field effect transistor structure with a Si channel and a CoFe/$n^{+}$-Si contact at room temperature. Under the application of a back-gate voltage , we clearly observe the three-terminal Hanle-effect signal, i.e., spin-accumulation signal. The magnitude of the spin-accumulation signals can be reduced with increasing the gate voltage. We consider that the gate controlled spin signals are attributed to the change in the carrier density in the Si channel beneath the CoFe/$n^{+}$-Si contact. This study is not only a technological jump for Si-based spintronic applications with gate structures but also reliable evidence for the spin injection into the semiconducting Si channel at room temperature.
124 - Y. Fukuma , L. Wang , H. Idzuchi 2011
The nonlocal spin injection in lateral spin valves is highly expected to be an effective method to generate a pure spin current for potential spintronic application. However, the spin valve voltage, which decides the magnitude of the spin current flo wing into an additional ferromagnetic wire, is typically of the order of 1 {mu}V. Here we show that lateral spin valves with low resistive NiFe/MgO/Ag junctions enable the efficient spin injection with high applied current density, which leads to the spin valve voltage increased hundredfold. Hanle effect measurements demonstrate a long-distance collective 2-pi spin precession along a 6 {mu}m long Ag wire. These results suggest a route to faster and manipulable spin transport for the development of pure spin current based memory, logic and sensing devices.
We report on the first systematic study of spin transport in bilayer graphene (BLG) as a function of mobility, minimum conductivity, charge density and temperature. The spin relaxation time $tau_s$ scales inversely with the mobility $mu$ of BLG sampl es both at room temperature and at low temperature. This indicates the importance of Dyakonov - Perel spin scattering in BLG. Spin relaxation times of up to 2 ns are observed in samples with the lowest mobility. These times are an order of magnitude longer than any values previously reported for single layer graphene (SLG). We discuss the role of intrinsic and extrinsic factors that could lead to the dominance of Dyakonov-Perel spin scattering in BLG. In comparison to SLG, significant changes in the density dependence of $tau_s$ are observed as a function of temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا