ترغب بنشر مسار تعليمي؟ اضغط هنا

Use of the Meta-analysis in the Finding of Singularities of a Nuclear Matter Created in Ultrarelativistic Nuclear Collisions

105   0   0.0 ( 0 )
 نشر من قبل Valeriy Kizka Alexandrovich
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V.A. Kizka




اسأل ChatGPT حول البحث

The published theoretical data of few models (PHSD/HSD both with and without chiral symmetry restoration) applied to experimental data from collisions of nuclei from SIS to LHC energies, have been analised by using of the meta-analysis what allowed to localize a possible phase singularities of nuclear matter created in the central nucleus-nucleus collisions: The ignition of the Quark-Gluon Plasmas (QGP) drop begins already at top SIS/BEVALAC energies. This drop of QGP occupies small part, 15$%$ (an averaged radius about 5.3 fm if radius of fireball is 10 fm), of the whole volume of a fireball created at top SIS energies. The drop of exotic matter goes through a split transition (separated boundaries of sharp (1-st order) crossover and chiral symmetry restoration) between QGP and Quarkyonic matter at energy around $sqrt{s_{NN}},=,$3.5 GeV. The boundary of transition between Quarkyonic and Hadronic matter was localized between $sqrt{s_{NN}},=,$4.4 and 5.3 GeV and it is not being intersected by the phase trajectory of that drop. Critical endpoint has been localized at around $sqrt{s_{NN}},=,$9.3 GeV and a triple point - at around 12 GeV, the boundary of smooth (2-nd order) crossover transition with chiral symmetry restoration between Quarkyonic matter and QGP was localized between $sqrt{s_{NN}},=,$9.3 and 12 GeV. The phase trajectory of a hadronic corona, enveloping the drop, stays always in the hadronic phase.



قيم البحث

اقرأ أيضاً

We perform statistically rigorous uncertainty quantification (UQ) for chiral effective field theory ($chi$EFT) applied to infinite nuclear matter up to twice nuclear saturation density. The equation of state (EOS) is based on high-order many-body per turbation theory calculations with nucleon-nucleon and three-nucleon interactions up to fourth order in the $chi$EFT expansion. From these calculations our newly developed Bayesian machine-learning approach extracts the size and smoothness properties of the correlated EFT truncation error. We then propose a novel extension that uses multitask machine learning to reveal correlations between the EOS at different proton fractions. The inferred in-medium $chi$EFT breakdown scale in pure neutron matter and symmetric nuclear matter is consistent with that from free-space nucleon-nucleon scattering. These significant advances allow us to provide posterior distributions for the nuclear saturation point and propagate theoretical uncertainties to derived quantities: the pressure and incompressibility of symmetric nuclear matter, the nuclear symmetry energy, and its derivative. Our results, which are validated by statistical diagnostics, demonstrate that an understanding of truncation-error correlations between different densities and different observables is crucial for reliable UQ. The methods developed here are publicly available as annotated Jupyter notebooks.
Highly excited nuclear matter created in ultrarelativistic heavy-ion collisions possibly reaches the phase of quark deconfinement. It quickly cools down and hadronises. We explain that the process of hadronisation may likely be connected with disinte gration into fragments. Observable signals of such a scenario are proposed.
We describe a model of jet quenching in nuclear collisions at RHIC energies. In the model, jet quenching is to be caused by the interruption of jet formation by nucleons arriving at the position of jet formation in a time shorter than the jet formati on time. Our mechanism predicts suppression of high-pt spectra also in d+Au reactions.
Short range particle repulsion is rather important property of the hadronic and nuclear matter equations of state. We present a novel equation of state which is based on the virial expansion for the multicomponent mixtures with hard-core repulsion. I n addition to the hard-core repulsion taken into account by the proper volumes of particles, this equation of state explicitly contains the surface tension which is induced by another part of the hard-core repulsion between particles. At high densities the induced surface tension vanishes and the excluded volume treatment of hard-core repulsion is switched to its proper volume treatment. Possible applications of this equation of state to a description of hadronic multiplicities measured in A+A collisions, to an investigation of the nuclear matter phase diagram properties and to the neutron star interior modeling are discussed.
269 - Fiorella Burgio 2007
The Equation of State (EoS) of dense matter represents a central issue in the study of compact astrophysical objects and heavy ion reactions at intermediate and relativistic energies. We have derived a nuclear EoS with nucleons and hyperons within th e Brueckner-Hartree-Fock approach, and joined it with quark matter EoS. For that, we have employed the MIT bag model, as well as the Nambu--Jona-Lasinio (NJL) and the Color Dielectric (CD) models, and found that the NS maximum masses are not larger than 1.7 solar masses. A comparison with available data supports the idea that dense matter EoS should be soft at low density and quite stiff at high density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا