ﻻ يوجد ملخص باللغة العربية
In the last few years, deep learning has led to very good performance on a variety of problems, such as visual recognition, speech recognition and natural language processing. Among different types of deep neural networks, convolutional neural networks have been most extensively studied. Leveraging on the rapid growth in the amount of the annotated data and the great improvements in the strengths of graphics processor units, the research on convolutional neural networks has been emerged swiftly and achieved state-of-the-art results on various tasks. In this paper, we provide a broad survey of the recent advances in convolutional neural networks. We detailize the improvements of CNN on different aspects, including layer design, activation function, loss function, regularization, optimization and fast computation. Besides, we also introduce various applications of convolutional neural networks in computer vision, speech and natural language processing.
The fast growing deep learning technologies have become the main solution of many machine learning problems for medical image analysis. Deep convolution neural networks (CNNs), as one of the most important branch of the deep learning family, have bee
Convolutional neural networks trained without supervision come close to matching performance with supervised pre-training, but sometimes at the cost of an even higher number of parameters. Extracting subnetworks from these large unsupervised convnets
Neural Architecture Search (NAS) has shifted network design from using human intuition to leveraging search algorithms guided by evaluation metrics. We study channel size optimization in convolutional neural networks (CNN) and identify the role it pl
Convolutional neural networks perform well on object recognition because of a number of recent advances: rectified linear units (ReLUs), data augmentation, dropout, and large labelled datasets. Unsupervised data has been proposed as another way to im
Group convolution, which divides the channels of ConvNets into groups, has achieved impressive improvement over the regular convolution operation. However, existing models, eg. ResNeXt, still suffers from the sub-optimal performance due to manually d