ترغب بنشر مسار تعليمي؟ اضغط هنا

Remote Health Coaching System and Human Motion Data Analysis for Physical Therapy with Microsoft Kinect

99   0   0.0 ( 0 )
 نشر من قبل Qifei Wang
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper summarizes the recent progress we have made for the computer vision technologies in physical therapy with the accessible and affordable devices. We first introduce the remote health coaching system we build with Microsoft Kinect. Since the motion data captured by Kinect is noisy, we investigate the data accuracy of Kinect with respect to the high accuracy motion capture system. We also propose an outlier data removal algorithm based on the data distribution. In order to generate the kinematic parameter from the noisy data captured by Kinect, we propose a kinematic filtering algorithm based on Unscented Kalman Filter and the kinematic model of human skeleton. The proposed algorithm can obtain smooth kinematic parameter with reduced noise compared to the kinematic parameter generated from the raw motion data from Kinect.



قيم البحث

اقرأ أيضاً

Microsoft Kinect camera and its skeletal tracking capabilities have been embraced by many researchers and commercial developers in various applications of real-time human movement analysis. In this paper, we evaluate the accuracy of the human kinemat ic motion data in the first and second generation of the Kinect system, and compare the results with an optical motion capture system. We collected motion data in 12 exercises for 10 different subjects and from three different viewpoints. We report on the accuracy of the joint localization and bone length estimation of Kinect skeletons in comparison to the motion capture. We also analyze the distribution of the joint localization offsets by fitting a mixture of Gaussian and uniform distribution models to determine the outliers in the Kinect motion data. Our analysis shows that overall Kinect 2 has more robust and more accurate tracking of human pose as compared to Kinect 1.
We present a new trainable system for physically plausible markerless 3D human motion capture, which achieves state-of-the-art results in a broad range of challenging scenarios. Unlike most neural methods for human motion capture, our approach, which we dub physionical, is aware of physical and environmental constraints. It combines in a fully differentiable way several key innovations, i.e., 1. a proportional-derivative controller, with gains predicted by a neural network, that reduces delays even in the presence of fast motions, 2. an explicit rigid body dynamics model and 3. a novel optimisation layer that prevents physically implausible foot-floor penetration as a hard constraint. The inputs to our system are 2D joint keypoints, which are canonicalised in a novel way so as to reduce the dependency on intrinsic camera parameters -- both at train and test time. This enables more accurate global translation estimation without generalisability loss. Our model can be finetuned only with 2D annotations when the 3D annotations are not available. It produces smooth and physically principled 3D motions in an interactive frame rate in a wide variety of challenging scenes, including newly recorded ones. Its advantages are especially noticeable on in-the-wild sequences that significantly differ from common 3D pose estimation benchmarks such as Human 3.6M and MPI-INF-3DHP. Qualitative results are available at http://gvv.mpi-inf.mpg.de/projects/PhysAware/
120 - Qifei Wang 2016
This paper summarizes the recent progress in human motion analysis and its applications. In the beginning, we reviewed the motion capture systems and the representation model of humans motion data. Next, we sketched the advanced human motion data pro cessing technologies, including motion data filtering, temporal alignment, and segmentation. The following parts overview the state-of-the-art approaches of action recognition and dynamics measuring since these two are the most active research areas in human motion analysis. The last part discusses some emerging applications of the human motion analysis in healthcare, human robot interaction, security surveillance, virtual reality and animation. The promising research topics of human motion analysis in the future is also summarized in the last part.
Effectively measuring the similarity between two human motions is necessary for several computer vision tasks such as gait analysis, person identi- fication and action retrieval. Nevertheless, we believe that traditional approaches such as L2 distanc e or Dynamic Time Warping based on hand-crafted local pose metrics fail to appropriately capture the semantic relationship across motions and, as such, are not suitable for being employed as metrics within these tasks. This work addresses this limitation by means of a triplet-based deep metric learning specifically tailored to deal with human motion data, in particular with the prob- lem of varying input size and computationally expensive hard negative mining due to motion pair alignment. Specifically, we propose (1) a novel metric learn- ing objective based on a triplet architecture and Maximum Mean Discrepancy; as well as, (2) a novel deep architecture based on attentive recurrent neural networks. One benefit of our objective function is that it enforces a better separation within the learned embedding space of the different motion categories by means of the associated distribution moments. At the same time, our attentive recurrent neural network allows processing varying input sizes to a fixed size of embedding while learning to focus on those motion parts that are semantically distinctive. Our ex- periments on two different datasets demonstrate significant improvements over conventional human motion metrics.
Recovering high-quality 3D human motion in complex scenes from monocular videos is important for many applications, ranging from AR/VR to robotics. However, capturing realistic human-scene interactions, while dealing with occlusions and partial views , is challenging; current approaches are still far from achieving compelling results. We address this problem by proposing LEMO: LEarning human MOtion priors for 4D human body capture. By leveraging the large-scale motion capture dataset AMASS, we introduce a novel motion smoothness prior, which strongly reduces the jitters exhibited by poses recovered over a sequence. Furthermore, to handle contacts and occlusions occurring frequently in body-scene interactions, we design a contact friction term and a contact-aware motion infiller obtained via per-instance self-supervised training. To prove the effectiveness of the proposed motion priors, we combine them into a novel pipeline for 4D human body capture in 3D scenes. With our pipeline, we demonstrate high-quality 4D human body capture, reconstructing smooth motions and physically plausible body-scene interactions. The code and data are available at https://sanweiliti.github.io/LEMO/LEMO.html.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا