ﻻ يوجد ملخص باللغة العربية
A cell-molecular based evolutionary model of tumor development driven by a stochastic Moran birth-death process is developed, where each cell carries molecular information represented by a four-digit binary string, used to differentiate cells into 16 molecular types. The binary string value determines cell fitness, with lower fit cells (e.g. 0000) defined as healthy phenotypes, and higher fit cells (e.g. 1111) defined as malignant phenotypes. At each step of the birth-death process, the two phenotypic sub-populations compete in a prisoners dilemma evolutionary game with healthy cells (cooperators) competing with cancer cells (defectors). Fitness and birth-death rates are defined via the prisoners dilemma payoff matrix. Cells are able undergo two types of stochastic point mutations passed to the daughter cells binary string during birth: passenger mutations (conferring no fitness advantage) and driver mutations (increasing cell fitness). Dynamic phylogenetic trees show clonal expansions of cancer cell sub-populations from an initial malignant cell. The tumor growth equation states that the growth rate is proportional to the logarithm of cellular heterogeneity, here measured using the Shannon entropy of the distribution of binary sequences in the tumor cell population. Nonconstant tumor growth rates, (exponential growth during sub-clinical range of the tumor and subsequent slowed growth during tumor saturation) are associated with a Gompertzian growth curve, an emergent feature of the model explained here using simple statistical mechanics principles related to the degree of functional coupling of the cell states. Dosing strategies at early stage development, mid-stage (clinical stage), and late stage development of the tumor are compared, showing therapy is most effective during the sub-clinical stage, before the cancer subpopulation is selected for growth.
A fundamental question in biology is how cell populations evolve into different subtypes based on homogeneous processes at the single cell level. Here we show that population bimodality can emerge even when biological processes are homogenous at the
The antibody repertoire of each individual is continuously updated by the evolutionary process of B cell receptor mutation and selection. It has recently become possible to gain detailed information concerning this process through high-throughput seq
We propose a strange-attractor model of tumor growth and metastasis. It is a 4-dimensional spatio-temporal cancer model with strong nonlinear couplings. Even the same type of tumor is different in every patient both in size and appearance, as well as
Heterogeneity is a hallmark of all cancers. Tumor heterogeneity is found at different levels -- interpatient, intrapatient, and intratumor heterogeneity. All of them pose challenges for clinical treatments. The latter two scenarios can also increase
Abiotic emergence of ordered information stored in the form of RNA is an important unresolved problem concerning the origin of life. A polymer longer than 40--100 nucleotides is necessary to expect a self-replicating activity, but the formation of su