ﻻ يوجد ملخص باللغة العربية
The antibody repertoire of each individual is continuously updated by the evolutionary process of B cell receptor mutation and selection. It has recently become possible to gain detailed information concerning this process through high-throughput sequencing. Here, we develop modern statistical molecular evolution methods for the analysis of B cell sequence data, and then apply them to a very deep short-read data set of B cell receptors. We find that the substitution process is conserved across individuals but varies significantly across gene segments. We investigate selection on B cell receptors using a novel method that side-steps the difficulties encountered by previous work in differentiating between selection and motif-driven mutation; this is done through stochastic mapping and empirical Bayes estimators that compare the evolution of in-frame and out-of-frame rearrangements. We use this new method to derive a per-residue map of selection, which provides a more nuanced view of the constraints on framework and variable regions.
We are frequently faced with a large collection of antibodies, and want to select those with highest affinity for their cognate antigen. When developing a first-line therapeutic for a novel pathogen, for instance, we might look for such antibodies in
The affinity of antibodies (Abs) produced in vivo for their target antigens (Ags) is typically well below the maximum affinity possible. Nearly 25 years ago, Foote and Eisen explained how an affinity ceiling could arise from constraints associated wi
Population structure induced by both spatial embedding and more general networks of interaction, such as model social networks, have been shown to have a fundamental effect on the dynamics and outcome of evolutionary games. These effects have, howeve
A cell-molecular based evolutionary model of tumor development driven by a stochastic Moran birth-death process is developed, where each cell carries molecular information represented by a four-digit binary string, used to differentiate cells into 16
The collection of immunoglobulin genes in an individuals germline, which gives rise to B cell receptors via recombination, is known to vary significantly across individuals. In humans, for example, each individual has only a fraction of the several h