ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital and superorbital variability of LS I +61 303 at low radio frequencies with GMRT and LOFAR

58   0   0.0 ( 0 )
 نشر من قبل Benito Marcote
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

LS I +61 303 is a gamma-ray binary that exhibits an outburst at GHz frequencies each orbital cycle of $approx$ 26.5 d and a superorbital modulation with a period of $approx$ 4.6 yr. We have performed a detailed study of the low-frequency radio emission of LS I +61 303 by analysing all the archival GMRT data at 150, 235 and 610 MHz, and conducting regular LOFAR observations within the Radio Sky Monitor (RSM) at 150 MHz. We have detected the source for the first time at 150 MHz, which is also the first detection of a gamma-ray binary at such a low frequency. We have obtained the light-curves of the source at 150, 235 and 610 MHz, all of them showing orbital modulation. The light-curves at 235 and 610 MHz also show the existence of superorbital variability. A comparison with contemporaneous 15-GHz data shows remarkable differences with these light-curves. At 15 GHz we see clear outbursts, whereas at low frequencies we see variability with wide maxima. The light-curve at 235 MHz seems to be anticorrelated with the one at 610 MHz, implying a shift of $sim$ 0.5 orbital phases in the maxima. We model the shifts between the maxima at different frequencies as due to changes in the physical parameters of the emitting region assuming either free-free absorption or synchrotron self-absorption, obtaining expansion velocities for this region close to the stellar wind velocity with both mechanisms.



قيم البحث

اقرأ أيضاً

The gamma-ray binary LS I +61$^{circ}$303 is a well established source from centimeter radio up to very high energy (VHE; E$>$100 GeV). Its broadband emission shows a periodicity of $sim$26.5 days, coincident with the orbital period. A longer (super- orbital) period of 1667 $pm$ 8 days was discovered in radio and confirmed in optical and high energy (HE; E>100 MeV) gamma-ray observations. We present a four-year campaign performed by MAGIC together with archival data concentrating on a search for a long timescale signature in the VHE emission. We focus on the search for super-orbital modulation of the VHE peak and on the search for correlations between TeV emission and optical determination of the extension of the circumstellar disk. A four-year campaign has been carried out by MAGIC. The source was observed during the orbital phases when the periodic VHE outbursts have occurred ($phi$=0.55-0.75). Additionally, we included archival MAGIC observations and data published by the VERITAS collaboration in these studies. For the correlation studies, LS I +61$^{circ}$303 has also been observed during the orbital phases where sporadic VHE emission had been detected in the past ($phi$=0.75-1.0). These MAGIC observations were simultaneous with optical spectroscopy from the LIVERPOOL telescope. The TeV flux of the periodical outburst in orbital phases $phi$=0.5--0.75 was found to show yearly variability consistent with the $sim$4.5 years long-term modulation found in the radio band. This modulation of the TeV flux can be well described by a sine function with the best fit period of $1610pm 58$ days. The complete dataset span two super-orbital periods. There is no evidence for a correlation between the TeV emission and the mass-loss rate of the Be star but this may be affected by the strong, short timescale (as short as intra-day) variation displayed by the H$alpha$ fluxes.
We present INTEGRAL spectral analysis in the orbital/superorbital phase space of LS I +61 303. A hard X-ray spectrum with no cutoff is observed at all orbital/superorbital phases. The hard X-ray index is found to be uncorrelated with the radio index (non-simultaneously) measured at the same orbital and superorbital phases. In particular, the absence of an X-ray spectrum softening during the periods of negative radio index does not favor a simple interpretation of the radio index variations in terms of changes of state in a microquasar. We uncover hints for the superorbital variability in the hard X-ray flux, in phase with the superorbital modulation in soft X-rays. An orbital phase drift of radio peak flux and index along the superorbital period is observed in the radio data. We explore its influence on a previously reported double peak structure of radio orbital lightcurve, posing it as a plausible explanation.
Context. LS I +61 303 is a member of the select group of gamma-ray binaries: galactic binary systems that contain a massive star and a compact object, show a changing milliarcsecond morphology and a similar broad spectral energy distribution (SED) th at peaks at MeV-TeV energies and is modulated by the orbital motion. The nature of the compact object is unclear in LS I +61 303, LS 5039 and HESS J0632+057, whereas PSR B1259-63 harbours a 47.74 ms radio pulsar. Aims. A scenario in which a young pulsar wind interacts with the stellar wind has been proposed to explain the very high energy (VHE, E > 100 GeV) gamma-ray emission detected from LS I +61 303, although no pulses have been reported from this system at any wavelength. We aim to find evidence of the pulsar nature of the compact object. Methods. We performed phased array observations with the Giant Metrewave Radio Telescope (GMRT) at 1280 MHz centred at phase 0.54. Simultaneous data from the multi-bit phased array (PA) back-end with a sampling time of tsamp = 128 microsec and from the polarimeter (PMT) back-end with tsamp = 256 microsec where taken. Results. No pulses have been found in the data set, with a minimum detectable mean flux density of sim 0.38 mJy at 8-sigma level for the pulsed emission from a putative pulsar with period P >2 ms and duty cycle D = 10% in the direction of LS I +61 303. Conclusions. The detection of posible radio pulsations will require deep and sensitive observations at frequencies sim0.5-5 GHz and orbital phases 0.6-0.7. However, it may be unfeasible to detect pulses if the putative pulsar is not beamed at the Earth or if there is a strong absorption within the binary system.
The high-mass X-ray binary LS I +61{deg}303 exhibits variability in its radio and X-ray emissions, ranging from minute to hour time-scales. At such short time-scales, not much is known about the possible correlations between these two emissions from this source, which might offer hints to their origin. Here, we study the relationship between these emissions using simultaneous X-ray and radio monitoring. We present new radio observations using the Arcminute Microkelvin Imager Large Array telescope at two frequency bands, 13-15.5 and 15.5-18 GHz. We also describe new X-ray observations performed using the XMM-Newton telescope. These X-ray and radio observations overlapped for five hours. We find for the first time that the radio and X-ray emission are correlated up to 81 per cent with their few percent variability correlated up to 40 per cent. We discuss possible physical scenarios that produces the observed correlations and variability in the radio and X-ray emission of LS I +61{deg}303.
LS I +61 303 and LS 5039 are exceptionally rare examples of HMXBs with MeV-TeV emission, making them two of only five known or proposed gamma-ray binaries. There has been disagreement within the literature over whether these systems are microquasars, with stellar winds accreting onto a compact object to produce high energy emission and relativistic jets, or whether their emission properties might be better explained by a relativistic pulsar wind colliding with the stellar wind. Here we present an attempt to detect radio pulsars in both systems with the Green Bank Telescope. The upper limits of flux density are between 4.1-14.5 uJy, and we discuss the null results of the search. Our spherically symmetric model of the wind of LS 5039 demonstrates that any pulsar emission will be strongly absorbed by the dense wind unless there is an evacuated region formed by a relativistic colliding wind shock. LS I +61 303 contains a rapidly rotating Be star whose wind is concentrated near the stellar equator. As long as the pulsar is not eclipsed by the circumstellar disk or viewed through the densest wind regions, detecting pulsed emission may be possible during part of the orbit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا