ﻻ يوجد ملخص باللغة العربية
We present INTEGRAL spectral analysis in the orbital/superorbital phase space of LS I +61 303. A hard X-ray spectrum with no cutoff is observed at all orbital/superorbital phases. The hard X-ray index is found to be uncorrelated with the radio index (non-simultaneously) measured at the same orbital and superorbital phases. In particular, the absence of an X-ray spectrum softening during the periods of negative radio index does not favor a simple interpretation of the radio index variations in terms of changes of state in a microquasar. We uncover hints for the superorbital variability in the hard X-ray flux, in phase with the superorbital modulation in soft X-rays. An orbital phase drift of radio peak flux and index along the superorbital period is observed in the radio data. We explore its influence on a previously reported double peak structure of radio orbital lightcurve, posing it as a plausible explanation.
LS I +61 303 is a gamma-ray binary that exhibits an outburst at GHz frequencies each orbital cycle of $approx$ 26.5 d and a superorbital modulation with a period of $approx$ 4.6 yr. We have performed a detailed study of the low-frequency radio emissi
The gamma-ray binary LS I +61$^{circ}$303 is a well established source from centimeter radio up to very high energy (VHE; E$>$100 GeV). Its broadband emission shows a periodicity of $sim$26.5 days, coincident with the orbital period. A longer (super-
The high-mass X-ray binary LS I +61{deg}303 exhibits variability in its radio and X-ray emissions, ranging from minute to hour time-scales. At such short time-scales, not much is known about the possible correlations between these two emissions from
Context. LS I +61 303 is a member of the select group of gamma-ray binaries: galactic binary systems that contain a massive star and a compact object, show a changing milliarcsecond morphology and a similar broad spectral energy distribution (SED) th
We review X-ray flux modulation from X-ray binaries on time scales corresponding to the orbital period and those at longer time scales (so called superorbital). Those modulations provide a powerful tool to constrain geometry of the accretion flow. Th