ﻻ يوجد ملخص باللغة العربية
To image in high resolution large and occlusion-prone scenes, a camera must move above and around. Degradation of visibility due to geometric occlusions and distances is exacerbated by scattering, when the scene is in a participating medium. Moreover, underwater and in other media, artificial lighting is needed. Overall, data quality depends on the observed surface, medium and the time-varying poses of the camera and light source. This work proposes to optimize camera/light poses as they move, so that the surface is scanned efficiently and the descattered recovery has the highest quality. The work generalizes the next best view concept of robot vision to scattering media and cooperative movable lighting. It also extends descattering to platforms that move optimally. The optimization criterion is information gain, taken from information theory. We exploit the existence of a prior rough 3D model, since underwater such a model is routinely obtained using sonar. We demonstrate this principle in a scaled-down setup.
Object detection and 6D pose estimation in the crowd (scenes with multiple object instances, severe foreground occlusions and background distractors), has become an important problem in many rapidly evolving technological areas such as robotics and a
Binocular stereo vision is an important branch of machine vision, which imitates the human eye and matches the left and right images captured by the camera based on epipolar constraints. The matched disparity map can be calculated according to the ca
We present a classification based approach for the next best view selection and show how we can plausibly obtain a supervisory signal for this task. The proposed approach is end-to-end trainable and aims to get the best possible 3D reconstruction qua
In an underwater scene, wavelength-dependent light absorption and scattering degrade the visibility of images, causing low contrast and distorted color casts. To address this problem, we propose a convolutional neural network based image enhancement
Underwater image enhancement is such an important vision task due to its significance in marine engineering and aquatic robot. It is usually work as a pre-processing step to improve the performance of high level vision tasks such as underwater object