ﻻ يوجد ملخص باللغة العربية
In this paper we study a pair of numerical parameters associated to a graph $G$. One the one hand, one can construct $text{Hom}(K_2, G)$, a space of homomorphisms from a edge $K_2$ into $G$ and study its (topological) connectivity. This approach dates back to the neighborhood complexes introduced by Lovasz in his proof of the Kneser conjecture. In another direction Brightwell and Winkler introduced a graph parameter called the warmth $zeta(G)$ of a graph $G$, based on asymptotic behavior of $d$-branching walks in $G$ and inspired by constructions in statistical physics. Both the warmth of $G$ and the connectivity of $text{Hom}(K_2,G)$ provide lower bounds on the chromatic number of $G$. Here we seek to relate these two constructions, and in particular we provide evidence for the conjecture that the warmth of a graph $G$ is always less than three plus the connectivity of $text{Hom}(K_2, G)$. We succeed in establishing a first nontrivial case of the conjecture, by showing that $zeta(G) leq 3$ if $text{Hom}(K_2,G)$ has an infinite first homology group. We also calculate warmth for a family of `twisted toroidal graphs that are important extremal examples in the context of $text{Hom}$ complexes. Finally we show that $zeta(G) leq n-1$ if a graph $G$ does not have the complete bipartite graph $K_{a,b}$ for $a+b=n$. This provides an analogue for a similar result in the context of $text{Hom}$ complexes.
The paper studies the connectivity properties of facet graphs of simplicial complexes of combinatorial interest. In particular, it is shown that the facet graphs of $d$-cycles, $d$-hypertrees and $d$-hypercuts are, respectively, $(d+1)$, $d$, and $(n
The cut-rank of a set $X$ in a graph $G$ is the rank of the $Xtimes (V(G)-X)$ submatrix of the adjacency matrix over the binary field. A split is a partition of the vertex set into two sets $(X,Y)$ such that the cut-rank of $X$ is less than $2$ and b
Let $G$ be a finite simple non-complete connected graph on ${1, ldots, n}$ and $kappa(G) geq 1$ its vertex connectivity. Let $f(G)$ denote the number of free vertices of $G$ and $mathrm{diam}(G)$ the diameter of $G$. Being motivated by the computatio
A connected graph $G$ is said to be $k$-connected if it has more than $k$ vertices and remains connected whenever fewer than $k$ vertices are deleted. In this paper, for a connected graph $G$ with sufficiently large order, we present a tight sufficie
The notion of $times$-homotopy from cite{DocHom} is investigated in the context of the category of pointed graphs. The main result is a long exact sequence that relates the higher homotopy groups of the space $Hom_*(G,H)$ with the homotopy groups of