ﻻ يوجد ملخص باللغة العربية
We discuss shape profiles emerging in inhomogeneous growth of squeezed tissues. Two approaches are used simultaneously: i) conformal embedding of two-dimensional domain with hyperbolic metrics into the plane, and ii) a pure energetic consideration based on the minimization of the total energy functional. In the latter case the non-uniformly pre-stressed plate, which models the inhomogeneous two-dimensional growth, is analyzed in linear regime under small stochastic perturbations. It is explicitly demonstrated that both approaches give consistent results for buckling profiles and reveal self-similar behavior. We speculate that fractal-like organization of growing squeezed structure has a far-reaching impact on understanding cell proliferation in various biological tissues.
Periodic wrinkling of a rigid capping layer on a deformable substrate provides a useful method for templating surface topography for a variety of novel applications. Many experiments have studied wrinkle formation during the compression of a rigid fi
Thin dielectric elastomers with compliant electrodes exhibit various types of instability under the action of electromechanical loading. Guided by the thermodynamically-based formulation of Fosdick and Tang (J. Elasticity 88, 255-297, 2007), here we
Motivated by recent experiments showing the buckling of microtubules in cells, we study theoretically the mechanical response of, and force propagation along elastic filaments embedded in a non-linear elastic medium. We find that, although embedded m
This article investigates the large deflection and post-buckling of composite plates by employing the Carrera Unified Formulation (CUF). As a consequence, the geometrically nonlinear governing equations and the relevant incremental equations are deri
We investigate wrinkling patterns in a tri-layer torus consisting of an expanding thin outer layer, an intermediate soft layer and an inner core with a tunable shear modulus, inspired by pattern formation in developmental biologies, such as follicle