ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear thermoelectric transport in single-molecule junctions: the effect of electron-phonon interactions

159   0   0.0 ( 0 )
 نشر من قبل Natalya A. Zimbovskaya
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present work, we theoretically analyze the steady-state thermoelectric transport through a single-molecule junction with a vibrating bridge. Thermally induced charge current in the system is explored using a nonequilibrium Greens functions formalism. We study combined effects of Coulomb interactions between charge carriers on the bridge and electron-phonon interactions on the thermocurrent beyond the linear response regime. It is shown that electron-vibron interactions may significantly affect both magnitude and direction of the thermocurrent, and vibrational signatures may appear.



قيم البحث

اقرأ أيضاً

159 - R. C. Monreal , F. Flores , 2010
We present a combined theoretical approach to study the nonequilibrium transport properties of nanoscale systems coupled to metallic electrodes and exhibiting strong electron-phonon interactions. We use the Keldysh Green function formalism to general ize beyond linear theory in the applied voltage an equation of motion method and an interpolative self-energy approximation previously developed in equilibrium. We analyze the specific characteristics of inelastic transport appearing in the intensity versus voltage curves and in the conductance, providing qualitative criteria for the sign of the step-like features in the conductance. Excellent overall agreement between both approaches is found for a wide range of parameters.
We report results of theoretical studies of thermoelectric efficiency of single-molecule junctions with long molecular linkers. The linker is simulated by a chain of identical sites described using a tight-binding model. It is shown that thermoelectr ic figure of merit ZT strongly depends on the bridge length, being controlled by the lineshape of electron transmission function within the tunnel energy range corresponding to HOMO/LUMO transport channel. Using the adopted model we demonstrate that ZT may significantly increase as the linker lengthens, and that gateway states on the bridge (if any) may noticeably affect the length-dependent ZT. Temperature dependences of ZT for various bridge lengths are analyzed. It is shown that broad minima emerge in ZT versus temperature curves whose positions are controlled by the bridge lengths.
The energy dependent thermoelectric response of a single molecule contains valuable information about its transmission function and its excited states. However, measuring it requires devices that can efficiently heat up one side of the molecule while being able to tune its electrochemical potential over a wide energy range. Furthermore, to increase junction stability devices need to operate at cryogenic temperatures. In this work we report on a new device architecture to study the thermoelectric properties and the conductance of single molecules simultaneously over a wide energy range. We employ a sample heater in direct contact with the metallic electrodes contacting the single molecule which allows us to apply temperature biases up to $Delta T = 60$K with minimal heating of the molecular junction. This makes these devices compatible with base temperatures $T_mathrm{bath} <2$K and enables studies in the linear ($Delta T ll T_mathrm{molecule}$) and non-linear ($Delta T gg T_mathrm{molecule}$) thermoelectric transport regimes.
Electronic transport properties for single-molecule junctions have been widely measured by several techniques, including mechanically controllable break junctions, electromigration break junctions or by means of scanning tunneling microscopes. In par allel, many theoretical tools have been developed and refined for describing such transport properties and for obtaining numerical predictions. Most prominent among these theoretical tools are those based upon density functional theory. In this review, theory and experiment are critically compared and this confrontation leads to several important conclusions. The theoretically predicted trends nowadays reproduce the experimental findings quite well for series of molecules with a single well-defined control parameter, such as the length of the molecules. The quantitative agreement between theory and experiment usually is less convincing, however. Many reasons for quantitative discrepancies can be identified, from which one may decide that qualitative agreement is the best one may expect with present modeling tools. For further progress, benchmark systems are required that are sufficiently well-defined by experiment to allow quantitative testing of the approximation schemes underlying the theoretical modeling. Several key experiments can be identified suggesting that the present description may even be qualitatively incomplete in some cases. Such key experimental observations and their current models are also discussed here, leading to several suggestions for extensions of the models towards including dynamic image charges, electron correlations, and polaron formation.
We study thermoelectric transport through a coherent molecular conductor connected to two electron and two phonon baths using the nonequilibrium Greens function method. We focus on the mutual drag between electron and phonon transport as a result of `momentum transfer, which happens only when there are at least two phonon degrees of freedom. After deriving expressions for the linear drag coefficients, obeying the Onsager relation, we further investigate their effect on nonequilibrium transport. We show that the drag effect is closely related to two other phenomena: (1) adiabatic charge pumping through a coherent conductor; (2) the current-induced nonconservative and effective magnetic forces on phonons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا