ﻻ يوجد ملخص باللغة العربية
We study thermoelectric transport through a coherent molecular conductor connected to two electron and two phonon baths using the nonequilibrium Greens function method. We focus on the mutual drag between electron and phonon transport as a result of `momentum transfer, which happens only when there are at least two phonon degrees of freedom. After deriving expressions for the linear drag coefficients, obeying the Onsager relation, we further investigate their effect on nonequilibrium transport. We show that the drag effect is closely related to two other phenomena: (1) adiabatic charge pumping through a coherent conductor; (2) the current-induced nonconservative and effective magnetic forces on phonons.
Thermoelectric transport in nanoscale conductors is analyzed in terms of the response of the system to a thermo-mechanical field, first introduced by Luttinger, which couples to the electronic energy density. While in this approach the temperature re
There is great interest in the development of novel nanomachines that use charge, spin, or energy transport, to enable new sensors with unprecedented measurement capabilities. Electrical and thermal transport in these mesoscopic systems typically inv
We show that the Coulomb interaction between two circuits separated by an insulating layer leads to unconventional thermoelectric effects, such as the cooling by thermal current effect, the transverse thermoelectric effect and Maxwells demon effect.
We investigate transport and Coulomb drag properties of semiconductor-based electron-hole bilayer systems. Our calculations are motivated by recent experiments in undoped electron-hole bilayer structures based on GaAs-AlGaAs gated double quantum well
We present a combined theoretical approach to study the nonequilibrium transport properties of nanoscale systems coupled to metallic electrodes and exhibiting strong electron-phonon interactions. We use the Keldysh Green function formalism to general