ﻻ يوجد ملخص باللغة العربية
We present a general error-correcting scheme for quantum annealing that allows for the encoding of a logical qubit into an arbitrarily large number of physical qubits. Given any Ising model optimization problem, the encoding replaces each logical qubit by a complete graph of degree $C$, representing the distance of the error-correcting code. A subsequent minor-embedding step then implements the encoding on the underlying hardware graph of the quantum annealer. We demonstrate experimentally that the performance of a D-Wave Two quantum annealing device improves as $C$ grows. We show that the performance improvement can be interpreted as arising from an effective increase in the energy scale of the problem Hamiltonian, or equivalently, an effective reduction in the temperature at which the device operates. The number $C$ thus allows us to control the amount of protection against thermal and control errors, and in particular, to trade qubits for a lower effective temperature that scales as $C^{-eta}$, with $eta leq 2$. This effective temperature reduction is an important step towards scalable quantum annealing.
Nested quantum annealing correction (NQAC) is an error correcting scheme for quantum annealing that allows for the encoding of a logical qubit into an arbitrarily large number of physical qubits. The encoding replaces each logical qubit by a complete
Quantum annealing provides a promising route for the development of quantum optimization devices, but the usefulness of such devices will be limited in part by the range of implementable problems as dictated by hardware constraints. To overcome const
The performance of open-system quantum annealing is adversely affected by thermal excitations out of the ground state. While the presence of energy gaps between the ground and excited states suppresses such excitations, error correction techniques ar
New annealing schedules for quantum annealing are proposed based on the adiabatic theorem. These schedules exhibit faster decrease of the excitation probability than a linear schedule. To derive this conclusion, the asymptotic form of the excitation
In a typical quantum annealing protocol, the system starts with a transverse field Hamiltonian which is gradually turned off and replaced by a longitudinal Ising Hamiltonian. The ground state of the Ising Hamiltonian encodes the solution to the compu