ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural analysis of polycrystalline graphene systems by Raman spectroscopy

116   0   0.0 ( 0 )
 نشر من قبل Jenaina Ribeiro Soares
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Ribeiro-Soares




اسأل ChatGPT حول البحث

A theoretical model supported by experimental results explains the dependence of the Raman scattering signal on the evolution of structural parameters along the amorphization trajectory of polycrystalline graphene systems. Four parameters rule the scattering efficiencies, two structural and two related to the scattering dynamics. With the crystallite sizes previously defined from X-ray diffraction and microscopy experiments, the three other parameters (the average grain boundaries width, the phonon coherence length, and the electron coherence length) are extracted from the Raman data with the geometrical model proposed here. The broadly used intensity ratio between the C-C stretching (G band) and the defect-induced (D band) modes can be used to measure crystallite sizes only for samples with sizes larger than the phonon coherence length, which is found equal to 32 nm. The Raman linewidth of the G band is ideal to characterize the crystallite sizes below the phonon coherence length, down to the average grain boundaries width, which is found to be 2.8 nm. Ready-to-use equations to determine the crystallite dimensions based on Raman spectroscopy data are given.



قيم البحث

اقرأ أيضاً

The equilibrium optical phonons of graphene are well characterized in terms of anharmonicity and electron-phonon interactions, however their non-equilibrium properties in the presence of hot charge carriers are still not fully explored. Here we study the Raman spectrum of graphene under ultrafast laser excitation with 3ps pulses, which trade off between impulsive stimulation and spectral resolution. We localize energy into hot carriers, generating non-equilibrium temperatures in the ~1700-3100K range, far exceeding that of the phonon bath, while simultaneously detecting the Raman response. The linewidth of both G and 2D peaks show an increase as function of the electronic temperature. We explain this as a result of the Dirac cones broadening and electron-phonon scattering in the highly excited transient regime, important for the emerging field of graphene-based photonics and optoelectronics.
146 - F. Alzina , H. Tao , J. Moser 2010
We have investigated the effects of ozone treatment on graphene by Raman scattering. Sequential ozone short-exposure cycles resulted in increasing the $p$ doping levels as inferred from the blue shift of the 2$D$ and $G$ peak frequencies, without int roducing significant disorder. The two-phonon 2$D$ and 2$D$ Raman peak intensities show a significant decrease, while, on the contrary, the one-phonon G Raman peak intensity remains constant for the whole exposure process. The former reflects the dynamics of the photoexcited electrons (holes) and, specifically, the increase of the electron-electron scattering rate with doping. From the ratio of 2$D$ to 2$D$ intensities, which remains constant with doping, we could extract the ratio of electron-phonon coupling parameters. This ratio is found independent on the number of layers up to ten layers. Moreover, the rate of decrease of 2$D$ and 2$D$ intensities with doping was found to slowdown inversely proportional to the number of graphene layers, revealing the increase of the electron-electron collision probability.
In this work we study the behavior of the optical phonon modes in bilayer graphene devices by applying top gate voltage, using Raman scattering. We observe the splitting of the Raman G band as we tune the Fermi level of the sample, which is explained in terms of mixing of the Raman (Eg) and infrared (Eu) phonon modes, due to different doping in the two layers. We theoretically analyze our data in terms of the bilayer graphene phonon self-energy which includes non-homogeneous charge carrier doping between the graphene layers. We show that the comparison between the experiment and theoretical model not only gives information about the total charge concentration in the bilayer graphene device, but also allows to separately quantify the amount of unintentional charge coming from the top and the bottom of the system, and therefore to characterize the interaction of bilayer graphene with its surrounding environment.
Since lattice strain and charge density affect various material properties of graphene, a reliable and efficient method is required for quantification of the two variables. While Raman spectroscopy is sensitive and non-destructive, its validity towar ds precise quantification of chemical charge doping has not been tested. In this work, we quantified in-situ the fractional frequency change of 2D and G peaks in response of charge density induced by sulfuric acid solution as well as native lattice strain. Based on the experimental data and theoretical corroboration, we presented an optical method that simultaneously determines strain and chemically-induced charge density for three popular excitation wavelengths of 457, 514 and 633 nm. In order to expedite intercalation of dopant species through the graphene-SiO2 substrates, dense arrays of nanopores were precisely generated in graphene by thermal oxidation. The nano-perforated graphene membrane system was robust for multiple cycles of doping and undoping processes, and will be useful in studying various types of chemical interactions with graphene.
We present Raman spectroscopy measurements of non-etched graphene nanoribbons, with widths ranging from 15 to 160 nm, where the D-line intensity is strongly dependent on the polarization direction of the incident light. The extracted edge disorder co rrelation length is approximately one order of magnitude larger than on previously reported graphene ribbons fabricated by reactive ion etching techniques. This suggests a more regular crystallographic orientation of the non-etched graphene ribbons here presented. We further report on the ribbons width dependence of the line-width and frequency of the long-wavelength optical phonon mode (G-line) and the 2D-line of the studied graphene ribbons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا