ﻻ يوجد ملخص باللغة العربية
In this work we study the behavior of the optical phonon modes in bilayer graphene devices by applying top gate voltage, using Raman scattering. We observe the splitting of the Raman G band as we tune the Fermi level of the sample, which is explained in terms of mixing of the Raman (Eg) and infrared (Eu) phonon modes, due to different doping in the two layers. We theoretically analyze our data in terms of the bilayer graphene phonon self-energy which includes non-homogeneous charge carrier doping between the graphene layers. We show that the comparison between the experiment and theoretical model not only gives information about the total charge concentration in the bilayer graphene device, but also allows to separately quantify the amount of unintentional charge coming from the top and the bottom of the system, and therefore to characterize the interaction of bilayer graphene with its surrounding environment.
We demonstrate electrochemical top gating of graphene by using a solid polymer electrolyte. This allows to reach much higher electron and hole doping than standard back gating. In-situ Raman measurements monitor the doping. The G peak stiffens and sh
Top-gated, few-layer graphene field-effect transistors (FETs) fabricated on thermally-decomposed semi-insulating 4H-SiC substrates are demonstrated. Physical vapor deposited SiO2 is used as the gate dielectric. A two-dimensional hexagonal arrangement
We analyze the response of bilayer graphene to an external transverse electric field using a variational method. A previous attempt to do so in a recent paper by Falkovsky [Phys. Rev. B 80, 113413 (2009)] is shown to be flawed. Our calculation reaffi
The effects of Coulomb interactions on the electronic properties of bilayer graphene nanoribbons (BGNs) covered by a gate electrode are studied theoretically. The electron density distribution and the potential profile are calculated self-consistentl
A theoretical model supported by experimental results explains the dependence of the Raman scattering signal on the evolution of structural parameters along the amorphization trajectory of polycrystalline graphene systems. Four parameters rule the sc