ترغب بنشر مسار تعليمي؟ اضغط هنا

Review of Heavy-Ion Inertial Fusion Physics

190   0   0.0 ( 0 )
 نشر من قبل Shigeo Kawata
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this review paper on heavy ion inertial fusion (HIF), the state-of-the-art scientific results are presented and discussed on the HIF physics, including physics of the heavy ion beam (HIB) transport in a fusion reactor, the HIBs-ion illumination on a direct-drive fuel target, the fuel target physics, the uniformity of the HIF target implosion, the smoothing mechanisms of the target implosion non- uniformity and the robust target implosion. The HIB has remarkable preferable features to release the fusion energy in inertial fusion: in particle accelerators HIBs are generated with a high driver efficiency of ~ 30-40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ~50-70 to operate a HIF fusion reactor with the standard energy output of 1GW of electricity. The HIF reactor operation frequency would be ~10~15 Hz or so. Several- MJ HIBs illuminate a fusion fuel target, and the fuel target is imploded to about a thousand times of the solid density. Then the DT fuel is ignited and burned. The HIB ion deposition range is defined by the HIB ions stopping length, which would be ~1 mm or so depending on the material. Therefore, a relatively large density-scale length appears in the fuel target material. One of the critical issues in inertial fusion would be a spherically uniform target compression, which would be degraded by a non-uniform implosion. The implosion non-uniformity would be introduced by the Rayleigh-Taylor (R-T) instability, and the large density-gradient-scale length helps to reduce the R-T growth rate.



قيم البحث

اقرأ أيضاً

125 - T. Kubo , T. Karino , H. Kato 2018
In inertial confinement fusion, the scientific issues include the generation and transport of driver energy, the pellet design, the uniform target implosion physics, the realistic nuclear fusion reactor design, etc. In this paper, we present a pellet injection into a power reactor in heavy ion inertial fusion. We employ a magnetic correction method to reduce the pellet alignment error in heavy ion inertial fusion reactor chamber, including the gravity, the reactor gas drag force and the injection errors. We found that the magnetic correction device proposed in this paper is effective to construct a robust pellet injection system with a sufficiently small pellet alignment error.
Heavy ion inertial fusion (HIF) energy would be one of promising energy resources securing our future energy in order to sustain our human life for centuries and beyond. The heavy ion beam (HIB) has remarkable preferable features to release the fusio n energy in inertial confinement fusion: in particle accelerators HIBs are generated with a high driver efficiency of ~ 30-40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ~50-70 to operate a HIF fusion reactor with the standard energy output of 1GW of electricity. The HIF reactor operation frequency would be ~10~15 Hz or so. Several-MJ HIBs illuminate a fusion fuel target, and the fuel target is imploded to about a thousand times of the solid density. Then the DT fuel is ignited and burned. The HIB ion deposition range would be ~0.5-1 mm or so depending on the material. Therefore, a relatively large density-scale length appears in the fuel target material. The large density-gradient-scale length helps to reduce the Rayleigh-Taylor (R-T) growth rate. The key merits in HIF physics are presented in the article toward our bright future energy resource.
118 - S. Kondo , T. Karino , T. Iinuma 2016
In this paper a study on a fusion reactor core is presented in heavy ion inertial fusion (HIF), including the heavy ion beam (HIB) transport in a fusion reactor, a HIB interaction with a background gas, reactor cavity gas dynamics, the reactor gas ba ckflow to the beam lines, and a HIB fusion reactor design. The HIB has remarkable preferable features to release the fusion energy in inertial fusion: in particle accelerators HIBs are generated with a high driver efficiency of ~30-40%, and the HIB ions deposit their energy inside of materials. Therefore, a requirement for the fusion target energy gain is relatively low, that would be ~50 to operate a HIF fusion reactor with a standard energy output of 1GW of electricity. In a fusion reactor the HIB charge neutralization is needed for a ballistic HIB transport. Multiple mechanical shutters would be installed at each HIB port at the reactor wall to stop the blast waves and the chamber gas backflow, so that the accelerator final elements would be protected from the reactor gas contaminant. The essential fusion reactor components are discussed in this paper.
81 - T. Iinuma , T. Karino , S. Kondo 2016
In inertial fusion, one of scientific issues is to reduce an implosion non-uniformity of a spherical fuel target. The implosion non-uniformity is caused by several factors, including the driver beam illumination non-uniformity, the Rayleigh-Taylor in stability (RTI) growth, etc. In this paper we propose a new control method to reduce the implosion non-uniformity; the oscillating implosion acceleration dg(t) is created by pulsating and dephasing heavy ion beams (HIBs) in heavy ion inertial fusion (HIF). The dg(t) would reduce the RTI growth effectively. The original concept of the non- uniformity control in inertial fusion was proposed in (Kawata, et al., 1993). In this paper it was found that the pulsating and dephasing HIBs illumination provide successfully the controlled dg(t) and that dg(t) induced by the pulsating HIBs reduces well the implosion non-uniformity. Consequently the pulsating HIBs improve a pellet gain remarkably in HIF.
103 - A. Dainese 2010
Collisions of heavy ions (nuclei) at ultra-relativistic energies (sqrt(s_NN) >> 10 GeV per nucleon-nucleon collision in the centre of mass system) are regarded as a unique tool to produce in the laboratory a high energy density and high temperature s tate of strongly-interacting matter. In this short review, we will discuss the expected features of this hot and dense state, describe indications on its properties emerged from the experimental programs at the CERN-SPS and BNL-RHIC accelerators, and finally outlook the perspectives for the forthcoming heavy-ion runs at the CERN-LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا