ﻻ يوجد ملخص باللغة العربية
We present a large class of new backgrounds that are solutions of type II supergravity with a warped AdS${}_4$ factor, non-trivial axion-dilaton, B-field, and three- and five-form Ramond-Ramond fluxes. We obtain these solutions by applying non-Abelian T-dualities with respect to SU(2) or SU(2)/U(1) isometries to reductions to 10d IIA of 11d sugra solutions of the form AdS${}_4 times Y^7$, with $Y^7 = S^7/mathbb{Z}_k, S^7, M^{1,1,1}, Q^{1,1,1}$ and $N(1,1)$. The main class of reductions to IIA is along the Hopf fiber and leads to solutions of the form $AdS_4 times K_6$, where $K_6 $ is Kahler Einstein with $K_6=mathbb{CP}^3, S^2times mathbb{CP}^2, S^2times S^2 times S^2$; the first member of this class is dual to the ABJM field theory in the t Hooft limit. We also consider other less symmetric but susy preserving reductions along circles that are not the Hopf fiber. In the case of $N(1,1)$ we find an additional breaking of isometries in the NAT-dual background. To initiate the study of some properties of the field theory dual, we explicitly compute the central charge holographically.
We present a large class of new backgrounds that are solutions of type IIB supergravity with a warped AdS${}_5$ factor, non-trivial axion-dilaton, $B$-field and three-form Ramond-Ramond flux but yet have no five-form flux. We obtain these solutions a
In this paper we perform, in the spirit of the holographic correspondence, a particular asymptotic limit of N=2, AdS_4 supergravity to N=2 supergravity on a locally AdS_3 boundary. Our boundary theory enjoys OSp(2|2) x SO(1,2) invariance and is shown
We study a class of constant scalar invariant (CSI) spacetimes, which belong to the higher-dimensional Kundt class, that are solutions of supergravity. We review the known CSI supergravity solutions in this class and we explicitly present a number of
We study the system of equations derived twenty five years ago by B. de Wit and the first author [Nucl. Phys. B281 (1987) 211] as conditions for the consistent truncation of eleven-dimensional supergravity on AdS_4 x S^7 to gauged N = 8 supergravity
We show that it is in principle possible to construct dualities between commutative and non-commutative theories in a systematic way. This construction exploits a generalization of the exact renormalization group equation (ERG). We apply this to the