ﻻ يوجد ملخص باللغة العربية
We investigate the properties of relative analogues of admissible Ind, Pro, and elementary Tate objects for pairs of exact categories, and give criteria for those categories to be abelian. A relative index map is introduced, and as an application we deduce a description for boundary morphisms in the K-theory of coherent sheaves on Noetherian schemes.
We study the algebraic $K$-theory and Grothendieck-Witt theory of proto-exact categories of vector bundles over monoid schemes. Our main results are the complete description of the algebraic $K$-theory space of an integral monoid scheme $X$ in terms
We show that if X is a toric scheme over a regular ring containing a field then the direct limit of the K-groups of X taken over any infinite sequence of nontrivial dilations is homotopy invariant. This theorem was known in characteristic 0. The affi
Tate cohomology (as well as Borel homology and cohomology) of connective K-theory for $G=(mathbb{Z}/2)^n$ was completely calculated by Bruner and Greenlees. In this note, we essentially redo the calculation by a different, more elementary method, and
We show that the Waldhausen trace map $mathrm{Tr}_X colon A(X) to QX_+$, which defines a natural splitting map from the algebraic $K$-theory of spaces to stable homotopy, is natural up to emph{weak} homotopy with respect to transfer maps in algebraic
For $Gamma$ a relatively hyperbolic group, we construct a model for the universal space among $Gamma$-spaces with isotropy on the family VC of virtually cyclic subgroups of $Gamma$. We provide a recipe for identifying the maximal infinite virtually c