ﻻ يوجد ملخص باللغة العربية
For $Gamma$ a relatively hyperbolic group, we construct a model for the universal space among $Gamma$-spaces with isotropy on the family VC of virtually cyclic subgroups of $Gamma$. We provide a recipe for identifying the maximal infinite virtually cyclic subgroups of Coxeter groups which are lattices in $O^+(n,1)= iso(mathbb H^n)$. We use the information we obtain to explicitly compute the lower algebraic K-theory of the Coxeter group $gt$ (a non-uniform lattice in $O^+(3,1)$). Part of this computation involves calculating certain Waldhausen Nil-groups for $mathbb Z[D_2]$, $mathbb Z[D_3]$.
For a finite volume geodesic polyhedron P in hyperbolic 3-space, with the property that all interior angles between incident faces are integral submultiples of Pi, there is a naturally associated Coxeter group generated by reflections in the faces. F
A hyperbolic 3-simplex reflection group is a Coxeter group arising as a lattice in the isometry group of hyperbolic 3-space, with fundamental domain a geodesic simplex (possibly with some ideal vertices). The classification of these groups is known,
We show that the Waldhausen trace map $mathrm{Tr}_X colon A(X) to QX_+$, which defines a natural splitting map from the algebraic $K$-theory of spaces to stable homotopy, is natural up to emph{weak} homotopy with respect to transfer maps in algebraic
We study the algebraic $K$-theory and Grothendieck-Witt theory of proto-exact categories of vector bundles over monoid schemes. Our main results are the complete description of the algebraic $K$-theory space of an integral monoid scheme $X$ in terms
We introduce a functor $mathfrak{M}:mathbf{Alg}timesmathbf{Alg}^mathrm{op}rightarrowmathrm{pro}text{-}mathbf{Alg}$ constructed from representations of $mathrm{Hom}_mathbf{Alg}(A,Botimes ?)$. As applications, the following items are introduced and stu