ﻻ يوجد ملخص باللغة العربية
We study the motion of neutral and charged spinning bodies in curved space-time in the test-particle limit. We construct equations of motion using a closed covariant Poisson-Dirac bracket formulation which allows for different choices of the hamiltonian. We derive conditions for the existence of constants of motion and apply the formalism to the case of spherically symmetric space-times. We show that the periastron of a spinning body in a stable orbit in a Schwarzschild or Reissner-Nordstr{o}m background not only precesses, but also varies radially. By analysing the stability conditions for circular motion we find the innermost stable circular orbit (ISCO) as a function of spin. It turns out that there is an absolute lower limit on the ISCOs for increasing prograde spin. Finally we establish that the equations of motion can also be derived from the Einstein equations using an appropriate energy-momentum tensor for spinning particles.
The dynamics of spinning particles in curved space-time is discussed, emphasizing the hamiltonian formulation. Different choices of hamiltonians allow for the description of different gravitating systems. We give full results for the simplest case wi
With an aim to include the contribution of surface tension in the action of the boundary, we define the tangential pressure in terms of surface tension and Normal curvature in a more naturally geometric way. First, we show that the negative tangentia
Relativistic quantum field theory in the presence of an external electric potential in a general curved space-time geometry is considered. The Fermi coordinates adapted to the time-like geodesic are utilized to describe the low-energy physics in the
We reexamine in detail a canonical quantization method a la Gupta-Bleuler in which the Fock space is built over a so-called Krein space. This method has already been successfully applied to the massless minimally coupled scalar field in de Sitter spa
The Snyder-de Sitter model is an extension of the Snyder model to a de Sitter background. It is called triply special relativity (TSR) because it is based on three fundamental parameters: speed of light, Planck mass, and the cosmological constant. In