ﻻ يوجد ملخص باللغة العربية
Recently, Gaiotto and Rapcak proposed a generalization of $W_N$ algebra by considering the symmetry at the corner of the brane intersection (corner vertex operator algebra). The algebra, denoted as $Y_{L,M,N}$, is characterized by three non-negative integers $L, M, N$. It has a manifest triality automorphism which interchanges $L, M, N$, and can be obtained as a reduction of $W_{1+infty}$ through a pit in the plane partition representation. Later, Prochazka and Rapcak proposed a representation of $Y_{L,M,N}$ in terms of $L+M+N$ free bosons through a generalization of Miura transformation, where they use the fractional power differential operators. In this paper, we derive a $q$-deformation of their Miura transformation. It gives the free field representation for $q$-deformed $Y_{L,M,N}$, which is obtained as a reduction of the quantum toroidal algebra. We find that the $q$-deformed version has a simpler structure than the original one because of the Miki duality in the quantum toroidal algebra. For instance, one can find a direct correspondence between the operators obtained by the Miura transformation and those of the quantum toroidal algebra. Furthermore, we can show that the screening charges of both the symmetries are identical.
In this note we address the question whether one can recover from the vertex operator algebra associated with a four-dimensional N=2 superconformal field theory the deformation quantization of the Higgs branch of vacua that appears as a protected sub
We prove a general mirror duality theorem for a subalgebra $U$ of a simple vertex operator algebra $A$ and its coset $V=mathrm{Com}_A(U)$, under the assumption that $A$ is a semisimple $Uotimes V$-module. More specifically, we assume that $Acongbigop
Superconformal field theories (SCFT) are known to possess solvable yet nontrivial sectors in their full operator algebras. Two prime examples are the chiral algebra sector on a two dimensional plane in four dimensional $mathcal{N}=2$ SCFTs, and the t
This paper together with the previous one (arXiv:hep-th/0604146) presents the detailed description of all quantum deformations of D=4 Lorentz algebra as Hopf algebra in terms of complex and real generators. We describe here in detail two quantum defo
Let $V$ be an $mathbb{N}$-graded, simple, self-contragredient, $C_2$-cofinite vertex operator algebra. We show that if the $S$-transformation of the character of $V$ is a linear combination of characters of $V$-modules, then the category $mathcal{C}$