ﻻ يوجد ملخص باللغة العربية
The nearby lenticular galaxy NGC 1277 is thought to host one of the largest black holes known, however the black hole mass measurement is based on low spatial resolution spectroscopy. In this paper, we present Gemini Near-infrared Integral Field Spectrometer observations assisted by adaptive optics. We map out the galaxys stellar kinematics within ~440 pc of the nucleus with an angular resolution that allows us to probe well within the region where the potential from the black hole dominates. We find that the stellar velocity dispersion rises dramatically, reaching ~550 km/s at the center. Through orbit-based, stellar-dynamical models we obtain a black hole mass of (4.9 pm 1.6) x 10^9 Msun (1-sigma uncertainties). Although the black hole mass measurement is smaller by a factor of ~3 compared to previous claims based on large-scale kinematics, NGC 1277 does indeed contain one of the most massive black holes detected to date, and the black hole mass is an order of magnitude larger than expectations from the empirical relation between black hole mass and galaxy luminosity. Given the galaxys similarities to the higher redshift (z~2) massive quiescent galaxies, NGC 1277 could be a relic, passively evolving since that period. A population of local analogs to the higher redshift quiescent galaxies that also contain over-massive black holes may suggest that black hole growth precedes that of the host galaxy.
Recent results indicate that the compact lenticular galaxy NGC 1277 in the Perseus Cluster contains a black hole of approximately 10 billion solar masses. This far exceeds the expected mass of the central black hole in a galaxy of the modest dimensio
Different massive black hole mass - host galaxy scaling relations suggest that the growth of massive black holes is entangled with the evolution of their host galaxies. The number of measured black hole masses is still limited, and additional measure
The very high spatial resolution provided by Adaptive Optics assisted spectroscopic observations at 8m-class telescopes (e.g. with SINFONI at the VLT) will allow to greatly increase the number of direct black hole (BH) mass measurements which is curr
We present the stellar kinematics in the central 2 of the luminous elliptical galaxy M87 (NGC 4486), using laser adaptive optics to feed the Gemini telescope integral-field spectrograph, NIFS. The velocity dispersion rises to 480 km/s at 0.2. We comb
The mass of a supermassive black hole ($M_mathrm{BH}$) is a fundamental property that can be obtained through observational methods. Constraining $M_mathrm{BH}$ through multiple methods for an individual galaxy is important for verifying the accuracy