ﻻ يوجد ملخص باللغة العربية
We present the stellar kinematics in the central 2 of the luminous elliptical galaxy M87 (NGC 4486), using laser adaptive optics to feed the Gemini telescope integral-field spectrograph, NIFS. The velocity dispersion rises to 480 km/s at 0.2. We combine these data with extensive stellar kinematics out to large radii to derive a black-hole mass equal to (6.6+-0.4)x10^9 Msun, using orbit-based axisymmetric models and including only the NIFS data in the central region. Including previously-reported ground-based data in the central region drops the uncertainty to 0.25x10^9 Msun with no change in the best-fit mass; however, we rely on the values derived from the NIFS-only data in the central region in order to limit systematic differences. The best-fit model shows a significant increase in the tangential velocity anisotropy of stars orbiting in the central region with decreasing radius; similar to that seen in the centers of other core galaxies. The black-hole mass is insensitive to the inclusion of a dark halo in the models --- the high angular-resolution provided by the adaptive optics breaks the degeneracy between black-hole mass and stellar mass-to-light ratio. The present black-hole mass is in excellent agreement with the Gebhardt & Thomas value, implying that the dark halo must be included when the kinematic influence of the black hole is poorly resolved. This degeneracy implies that the black-hole masses of luminous core galaxies, where this effect is important, may need to be re-evaluated. The present value exceeds the prediction of the black hole-dispersion and black hole-luminosity relations, both of which predict about 1x10^9 Msun for M87, by close to twice the intrinsic scatter in the relations. The high-end of the black hole correlations may be poorly determined at present.
Different massive black hole mass - host galaxy scaling relations suggest that the growth of massive black holes is entangled with the evolution of their host galaxies. The number of measured black hole masses is still limited, and additional measure
The supermassive black hole of M87 is one of the most massive black holes known and has been the subject of several stellar and gas-dynamical mass measurements; however the most recent revision to the stellar-dynamical black hole mass measurement is
The very high spatial resolution provided by Adaptive Optics assisted spectroscopic observations at 8m-class telescopes (e.g. with SINFONI at the VLT) will allow to greatly increase the number of direct black hole (BH) mass measurements which is curr
The nearby lenticular galaxy NGC 1277 is thought to host one of the largest black holes known, however the black hole mass measurement is based on low spatial resolution spectroscopy. In this paper, we present Gemini Near-infrared Integral Field Spec
We model the dynamical structure of M87 (NGC4486) using high spatial resolution long-slit observations of stellar light in the central regions, two-dimensional stellar light kinematics out to half of the effective radius, and globular cluster velocit