ﻻ يوجد ملخص باللغة العربية
Two-dimensional transition metal dichalcogenides represent an emerging class of materials exhibiting various intriguing properties, and integration of such materials for potential device applications will necessarily encounter creation of different boundaries. Using first-principles approaches, here we investigate the structural, electronic, and magnetic properties along two inequivalent zigzag M and X edges of MX$_{2}$ (M=Mo, W; X=S, Se). Along the M edges, we reveal a previously unrecognized but energetically strongly preferred (2x1) reconstruction pattern, which is universally operative for all the MX$_{2}$, characterized by a self-passivation mechanism through place exchanges of the outmost X and M edge atoms. In contrast, the X edges undergo a more moderate (2x1) or (3x1) reconstruction for MoX$_{2}$ or WX$_{2}$, respectively. We further use the prototypical zigzag MoX$_{2}$ nanoribbons to demonstrate that the M and X edges possess distinctly different electronic and magnetic properties, which are discussed for spintronic and catalytic applications.
The electronic and thermoelectric properties of one to four monolayers of MoS$_{2}$, MoSe$_{2}$, WS$_{2}$, and WSe$_{2}$ are calculated. For few layer thicknesses,the near degeneracies of the conduction band $K$ and $Sigma$ valleys and the valence ba
Modulating electronic structure of monolayer transition metal dichalcogenides (TMDCs) is important for many applications and doping is an effective way towards this goal, yet is challenging to control. Here we report the in-situ substitutional doping
Majorana fermions, quantum particles with non-Abelian exchange statistics, are not only of fundamental importance, but also building blocks for fault-tolerant quantum computation. Although certain experimental breakthroughs for observing Majorana fer
Transition metal dichalcogenides (TMDs) represent a large family of high-quality 2D materials with attractive electronic, thermal, chemical, and mechanical properties. Chemical vapour deposition (CVD) technique is currently the most reliable route to
Two-dimensional (2D) materials have become a fertile playground for the exploration and manipulation of novel collective electronic states. Recent experiments have unveiled a variety of robust 2D orders in highly-crystalline materials ranging from ma