ﻻ يوجد ملخص باللغة العربية
We construct an $SU(2)_Ltimes SU(2)_Rtimes U(1)_{B-L}$ model with a Higgs sector that consists of a bidoublet and a doublet, and with a right-handed neutrino sector that includes one Dirac fermion and one Majorana fermion. This model explains the Run 1 CMS and ATLAS excess events in the $e^+e^-jj$, $jj$, $Wh^0$ and $WZ$ channels in terms of a $W$ boson of mass near 1.9 TeV and of coupling $g_R$ in the 0.4--0.5 range, with the lower half preferred by limits on $t bar b$ resonances and Run 2 results. The production cross section of this $W$ boson at the 13 TeV LHC is in the 700--900 fb range, allowing sensitivity in more than 17 final states. We determine that the $Z$ boson has a mass in the 3.4--4.5 TeV range and several decay channels that can be probed in Run 2 of the LHC, including cascade decays via heavy Higgs bosons.
We reconsider observables for discovering a heavy Higgs boson (with m_h > 2m_W) via its di-leptonic decays h -> WW -> l nu l nu. We show that observables generalizing the transverse mass that take into account the fact that both of the intermediate W
The hints from the LHC for the existence of a $W$ boson of mass around 1.9 TeV point towards a certain $SU(2)_Ltimes SU(2)_Rtimes U(1)_{B-L}$ gauge theory with an extended Higgs sector. We show that the decays of the $W$ boson into heavy Higgs bosons
We present a renormalizable theory that includes a $W$ boson of mass in the 1.8-2 TeV range, which may explain the excess events reported by the ATLAS Collaboration in a $WZ$ final state, and by the CMS Collaboration in $e^+!e^- jj$, $Wh^0$ and $jj$
The discovery of the Standard Model (SM) Higgs boson at the LHC completed the theory of electroweak and strong interactions. To determine the Higgs bosons intrinsic properties, more measurements on its various decay channels are still necessary. In t
Detecting TeV--PeV cosmic neutrinos provides crucial tests of neutrino physics and astrophysics. The statistics of IceCube and the larger proposed IceCube-Gen2 demand calculations of neutrino-nucleus interactions subdominant to deep-inelastic scatter