ﻻ يوجد ملخص باللغة العربية
We present a renormalizable theory that includes a $W$ boson of mass in the 1.8-2 TeV range, which may explain the excess events reported by the ATLAS Collaboration in a $WZ$ final state, and by the CMS Collaboration in $e^+!e^- jj$, $Wh^0$ and $jj$ final states. The $W$ boson couples to right-handed quarks and leptons, including Dirac neutrinos with TeV-scale masses. This theory predicts a $Z$ boson of mass in the 3.4-4.5 TeV range. The cross section times branching fractions for the narrow $Z$ dijet and dilepton peaks at the 13 TeV LHC are 10 fb and 0.6 fb, respectively, for $M_{Z}= 3.4$ TeV, and an order of magnitude smaller for $M_{Z}= 4.5$ TeV.
We construct an $SU(2)_Ltimes SU(2)_Rtimes U(1)_{B-L}$ model with a Higgs sector that consists of a bidoublet and a doublet, and with a right-handed neutrino sector that includes one Dirac fermion and one Majorana fermion. This model explains the Run
The hints from the LHC for the existence of a $W$ boson of mass around 1.9 TeV point towards a certain $SU(2)_Ltimes SU(2)_Rtimes U(1)_{B-L}$ gauge theory with an extended Higgs sector. We show that the decays of the $W$ boson into heavy Higgs bosons
Supersymmetric models with sub-TeV charginos and sleptons have been a candidate for the origin of the long-standing discrepancy in the muon anomalous magnetic moment (g-2). By gathering all the available LHC Run 2 results, we investigate the latest L
In this paper we present a comprehensive analysis of exclusive vector meson photoproduction in $pp$, $pPb$ and $PbPb$ collisions at Run 2 LHC energies using the Color Dipole formalism. The rapidity distributions and total cross sections for the $rho$
The inclusive diffractive quarkonium photoproduction in $pp$ and $pA$ collisions is investigated considering the Resolved Pomeron Model to describe the diffractive interaction. We estimate the rapidity and transverse momentum distributions for the $J