ﻻ يوجد ملخص باللغة العربية
We wish to construct a minimal set of algebraically independent scalar curvature invariants formed by the contraction of the Riemann (Ricci) tensor and its covariant derivatives up to some order of differentiation in three dimensional (3D) Lorentzian spacetimes. In order to do this we utilize the Cartan-Karlhede equivalence algorithm since, in general, all Cartan invariants are related to scalar polynomial curvature invariants. As an example we apply the algorithm to the class of 3D Szekeres cosmological spacetimes with comoving dust and cosmological constant $Lambda$. In this case, we find that there are at most twelve algebraically independent Cartan invariants, including $Lambda$. We present these Cartan invariants, and we relate them to twelve independent scalar polynomial curvature invariants (two, four and six, respectively, zeroth, first, and second order scalar polynomial curvature invariants).
There are a number of algebraic classifications of spacetimes in higher dimensions utilizing alignment theory, bivectors and discriminants. Previous work gave a set of necessary conditions in terms of discriminants for a spacetime to be of a particul
A short review of scalar curvature invariants in gravity theories is presented. We introduce how these invariants are constructed and discuss the minimal number of invariants required for a given spacetime. We then discuss applications of these invar
We introduce the concept of a geometric horizon, which is a surface distinguished by the vanishing of certain curvature invariants which characterize its special algebraic character. We motivate its use for the detection of the event horizon of a sta
$mathcal{I}$-non-degenerate spaces are spacetimes that can be characterized uniquely by their scalar curvature invariants. The ultimate goal of the current work is to construct a basis for the scalar polynomial curvature invariants in three dimension
Study the behaviour and the evolution of the cosmological field equations in an homogeneous and anisotropic spacetime with two scalar fields coupled in the kinetic term. Specifically, the kinetic energy for the scalar field Lagrangian is that of the