ﻻ يوجد ملخص باللغة العربية
There are a number of algebraic classifications of spacetimes in higher dimensions utilizing alignment theory, bivectors and discriminants. Previous work gave a set of necessary conditions in terms of discriminants for a spacetime to be of a particular algebraic type. We demonstrate the discriminant approach by applying the techniques to the Sorkin-Gross-Perry soliton, the supersymmetric and doubly-spinning black rings and some other higher dimensional spacetimes. We show that even in the case of some very complicated metrics it is possible to compute the relevant discriminants and extract useful information from them.
We wish to construct a minimal set of algebraically independent scalar curvature invariants formed by the contraction of the Riemann (Ricci) tensor and its covariant derivatives up to some order of differentiation in three dimensional (3D) Lorentzian
We algebraically classify some higher dimensional spacetimes, including a number of vacuum solutions of the Einstein field equations which can represent higher dimensional black holes. We discuss some consequences of this work.
We introduce the concept of a geometric horizon, which is a surface distinguished by the vanishing of certain curvature invariants which characterize its special algebraic character. We motivate its use for the detection of the event horizon of a sta
We derive expressions for the general five-dimensional metric for Kerr-(A)dS black holes. The Klein-Gordon equation is explicitly separated and we show that the angular part of the wave equation leads to just one spheroidal wave equation, which is al
We present the explicit metric forms for higher dimensional vanishing scalar invariant (VSI) Lorentzian spacetimes. We note that all of the VSI spacetimes belong to the higher dimensional Kundt class. We determine all of the VSI spacetimes which admi