ترغب بنشر مسار تعليمي؟ اضغط هنا

Regular patterns, substitudes, Feynman categories and operads

102   0   0.0 ( 0 )
 نشر من قبل Joachim Kock
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the regular patterns of Getzler (2009) form a 2-category biequivalent to the 2-category of substitudes of Day and Street (2003), and that the Feynman categories of Kaufmann and Ward (2013) form a 2-category biequivalent to the 2-category of coloured operads (with invertible 2-cells). These biequivalences induce equivalences between the corresponding categories of algebras. There are three main ingredients in establishing these biequivalences. The first is a strictification theorem (exploiting Powers General Coherence Result) which allows to reduce to the case where the structure maps are identity-on-objects functors and strict monoidal. Second, we subsume the Getzler and Kaufmann--Ward hereditary axioms into the notion of Guitart exactness, a general condition ensuring compatibility between certain left Kan extensions and a given monad, in this case the free-symmetric-monoidal-category monad. Finally we set up a biadjunction between substitudes and what we call pinned symmetric monoidal categories, from which the results follow as a consequence of the fact that the hereditary map is precisely the counit of this biadjunction.



قيم البحث

اقرأ أيضاً

115 - Donald Yau 2019
This monograph provides a coherent development of operads, infinity operads, and monoidal categories, equipped with equivariant structures encoded by an action operad. A group operad is a planar operad with an action operad equivariant structure. In the first three parts of this monograph, we establish a foundation for group operads and for their higher coherent analogues called infinity group operads. Examples include planar, symmetric, braided, ribbon, and cactus operads, and their infinity analogues. For example, with the tools developed here, we observe that the coherent ribbon nerve of the universal cover of the framed little 2-disc operad is an infinity ribbon operad. In Part 4 we define general monoidal categories equipped with an action operad equivariant structure, and provide a unifying treatment of coherence and strictification for them. Examples of such monoidal categories include symmetric, braided, ribbon, and coboundary monoidal categories, which naturally arise in the representation theory of quantum groups and of coboundary Hopf algebras and in the theory of crystals of finite dimensional complex reductive Lie algebras. Many illustrations and examples are included. Assuming only basic category theory, this monograph is intended for graduate students and researchers. In addition to being a coherent reference for the topics covered, this book is also suitable for a graduate student seminar and a reading course.
We use Luries symmetric monoidal envelope functor to give two new descriptions of $infty$-operads: as certain symmetric monoidal $infty$-categories whose underlying symmetric monoidal $infty$-groupoids are free, and as certain symmetric monoidal $inf ty$-categories equipped with a symmetric monoidal functor to finite sets (with disjoint union as tensor product). The latter leads to a third description of $infty$-operads, as a localization of a presheaf $infty$-category, and we use this to give a simple proof of the equivalence between Luries and Barwicks models for $infty$-operads.
This book is an introduction to 2-categories and bicategories, assuming only the most elementary aspects of category theory. A review of basic category theory is followed by a systematic discussion of 2-/bicategories, pasting diagrams, lax functors, 2-/bilimits, the Duskin nerve, 2-nerve, adjunctions and monads in bicategories, 2-monads, biequivalences, the Bicategorical Yoneda Lemma, and the Coherence Theorem for bicategories. Grothendieck fibrations and the Grothendieck construction are discussed next, followed by tricategories, monoidal bicategories, the Gray tensor product, and double categories. Completely detailed proofs of several fundamental but hard-to-find results are presented for the first time. With exercises and plenty of motivation and explanation, this book is useful for both beginners and experts.
We study the category of algebras of substitudes (also known to be equivalent to the regular patterns of Getzler) equipped with a (semi)model structure lifted from the model structure on the underlying presheaves. We are especially interested in the case when the model structure on presheaves is a Cisinski style localisation with respect to a proper Grothendieck fundamental localiser. For example, for $mathtt{W}=mathtt{W}_{infty}$ the minimal fundamental localiser, the local objects in such a localisation are locally constant presheaves, and local algebras of substitudes are exactly algebras whose underlying presheaves are locally constant. We investigate when this localisation has nice properties. We single out a class of such substitudes which we call left localisable and show that the substitudes for $n$-operads, symmetric, and braided operads are in this class. As an application we develop a homotopy theory of higher braided operads and prove a stabilisation theorem for their $mathtt{W}_k$-localisations. This theorem implies, in particular, a generalisation of the Baez-Dolan Stabilisation Hypothesis for higher categories.
We give a proof of a formula for the trace of self-braidings (in an arbitrary channel) in UMTCs which first appeared in the context of rational conformal field theories (CFTs). The trace is another invariant for UMTCs which depends only on modular da ta, and contains the expression of the Frobenius-Schur indicator as a special case. Furthermore, we discuss some applications of the trace formula to the realizability problem of modular data and to the classification of UMTCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا