ترغب بنشر مسار تعليمي؟ اضغط هنا

Bantays trace in Unitary Modular Tensor Categories

97   0   0.0 ( 0 )
 نشر من قبل Karl-Henning Rehren
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a proof of a formula for the trace of self-braidings (in an arbitrary channel) in UMTCs which first appeared in the context of rational conformal field theories (CFTs). The trace is another invariant for UMTCs which depends only on modular data, and contains the expression of the Frobenius-Schur indicator as a special case. Furthermore, we discuss some applications of the trace formula to the realizability problem of modular data and to the classification of UMTCs.



قيم البحث

اقرأ أيضاً

161 - Liang Kong , Ingo Runkel 2008
We consider algebras in a modular tensor category C. If the trace pairing of an algebra A in C is non-degenerate we associate to A a commutative algebra Z(A), called the full centre, in a doubled version of the category C. We prove that two simple al gebras with non-degenerate trace pairing are Morita-equivalent if and only if their full centres are isomorphic as algebras. This result has an interesting interpretation in two-dimensional rational conformal field theory; it implies that there cannot be several incompatible sets of boundary conditions for a given bulk theory.
Using M-theory in physics, Cho, Gang, and Kim (JHEP 2020, 115 (2020) ) recently outlined a program that connects two parallel subjects of three dimensional manifolds, namely, geometric topology and quantum topology. They suggest that classical topolo gical invariants such as Chern-Simons invariants of $text{SL}(2,mathbb{C})$-flat connections and adjoint Reidemeister torsions of a three manifold can be packaged together to produce a $(2+1)$-topological quantum field theory, which is essentially equivalent to a modular tensor category. It is further conjectured that every modular tensor category can be obtained from a three manifold and a semi-simple Lie group. In this paper, we study this program mathematically, and provide strong support for the feasibility of such a program. The program produces an algorithm to generate the potential modular $T$-matrix and the quantum dimensions of a candidate modular data. The modular $S$-matrix follows from essentially a trial-and-error procedure. We find modular tensor categories that realize candidate modular data constructed from Seifert fibered spaces and torus bundles over the circle that reveal many subtleties in the program. We make a number of improvements to the program based on our computations. Our main result is a mathematical construction of a premodular category from each Seifert fibered space with three singular fibers and a family of torus bundles over the circle with Thurston SOL geometry. The premodular categories from Seifert fibered spaces are related to Temperley-Lieb-Jones categories and the ones from torus bundles over the circle are related to metaplectic categories. We conjecture that a resulting premodular category is modular if and only if the three manifold is a $mathbb{Z}_2$-homology sphere and condensation of bosons in premodular categories leads to either modular or super-modular categories.
We study a 2-functor that assigns to a bimodule category over a finite k-linear tensor category a k-linear abelian category. This 2-functor can be regarded as a category-valued trace for 1-morphisms in the tricategory of finite tensor categories. It is defined by a universal property that is a categorification of Hochschild homology of bimodules over an algebra. We present several equivalent realizations of this 2-functor and show that it has a coherent cyclic invariance. Our results have applications to categories associated to circles in three-dimensional topological field theories with defects. This is made explicit for the subclass of Dijkgraaf-Witten topological field theories.
Restriction categories were established to handle maps that are partially defined with respect to composition. Tensor topology realises that monoidal categories have an intrinsic notion of space, and deals with objects and maps that are partially def ined with respect to this spatial structure. We introduce a construction that turns a firm monoidal category into a restriction category and axiomatise the monoidal restriction categories that arise this way, called tensor-restriction categories.
It has been conjectured that every $(2+1)$-TQFT is a Chern-Simons-Witten (CSW) theory labelled by a pair $(G,lambda)$, where $G$ is a compact Lie group, and $lambda in H^4(BG;Z)$ a cohomology class. We study two TQFTs constructed from Jones subfactor theory which are believed to be counterexamples to this conjecture: one is the quantum double of the even sectors of the $E_6$ subfactor, and the other is the quantum double of the even sectors of the Haagerup subfactor. We cannot prove mathematically that the two TQFTs are indeed counterexamples because CSW TQFTs, while physically defined, are not yet mathematically constructed for every pair $(G,lambda)$. The cases that are constructed mathematically include: 1. $G$ is a finite group--the Dijkgraaf-Witten TQFTs; 2. $G$ is torus $T^n$; 3. $G$ is a connected semi-simple Lie group--the Reshetikhin-Turaev TQFTs. We prove that the two TQFTs are not among those mathematically constructed TQFTs or their direct products. Both TQFTs are of the Turaev-Viro type: quantum doubles of spherical tensor categories. We further prove that neither TQFT is a quantum double of a braided fusion category, and give evidence that neither is an orbifold or coset of TQFTs above. Moreover, representation of the braid groups from the half $E_6$ TQFT can be used to build universal topological quantum computers, and the same is expected for the Haagerup case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا