ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing mixing of photons and axion-like particles by geometric phase

67   0   0.0 ( 0 )
 نشر من قبل Antonio Capolupo Dr
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We find that a geometric phase characterizes the phenomenon of mixing of photons with axion-like particles (ALPs). The laboratory observation of such a phase may provide a novel tool able to detect such a mixing phenomenon. We show that the geometric phase is dependent on the axion-like particle mass and coupling constant. We discuss an interferometric experiment able to detect the geometric phase associated to the ALPs-photon mixing.



قيم البحث

اقرأ أيضاً

We explore the sensitivity of photon-beam experiments to axion-like particles (ALPs) with QCD-scale masses whose dominant coupling to the Standard Model is either to photons or gluons. We introduce a novel data-driven method that eliminates the need for knowledge of nuclear form factors or the photon-beam flux when considering coherent Primakoff production off a nuclear target, and show that data collected by the PrimEx experiment could substantially improve the sensitivity to ALPs with $0.03 lesssim m_a lesssim 0.3$ GeV. Furthermore, we explore the potential sensitivity of running the GlueX experiment with a nuclear target and its planned PrimEx-like calorimeter. For the case where the dominant coupling is to gluons, we study photoproduction for the first time, and predict the future sensitivity of the GlueX experiment using its nominal proton target. Finally, we set world-leading limits for both the ALP-gluon coupling and the ALP-photon coupling based on public mass plots.
Axion-like particles (ALPs), relatively light (pseudo-)scalars coupled to two gauge bosons, are a common feature of many extensions of the Standard Model. Up to now there has been a gap in the sensitivity to such particles in the MeV to 10 GeV range. In this note we show that LEP data on $Ztogammagamma$ decays provides significant constraints in this range (and indeed up to the $Z$-mass). We also discuss the sensitivities of LHC and future colliders. Particularly the LHC shows promising sensitivity in searching for a pseudo-scalar with $4 lesssim m_a lesssim 60$ GeV in the channel $pp to 3 gamma$ with $m_{3gamma}approx m_{Z}$.
We present an analysis of electron recoils in cryogenic germanium detectors operated during the SuperCDMS Soudan experiment. The data are used to set new constraints on the axioelectric coupling of axion-like particles and the kinetic mixing paramete r of dark photons, assuming the respective species constitutes all of the galactic dark matter. This study covers the mass range from 40 eV/$c^2$ to 500 eV/$c^2$ for both candidates, excluding previously untested parameter space for masses below ~1 keV/$c^2$. For the kinetic mixing of dark photons, values below $10^{-15}$ are reached for particle masses around 100 eV/$c^2$; for the axioelectric coupling of axion-like particles, values below $10^{-12}$ are reached for particles with masses in the range of a few-hundred eV/$c^2$.
We propose a method to reveal axions and axion-like particles based on interferometric measurement of neutron beams. We consider an interferometer in which the neutron beam is split in two sub-beams propagating in regions with differently oriented ma gnetic fields. The beam paths and the strength of the magnetic fields are set in such a way that all the contributions to the phase difference but the one due to axion-induced interactions are removed. The resulting phase difference is directly related to the presence of axions. Our results show that such a phase is in principle detectable with neutron interferometry, possibly proving the existence of axions and axion-like particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا