ﻻ يوجد ملخص باللغة العربية
Axion-like particles (ALPs), relatively light (pseudo-)scalars coupled to two gauge bosons, are a common feature of many extensions of the Standard Model. Up to now there has been a gap in the sensitivity to such particles in the MeV to 10 GeV range. In this note we show that LEP data on $Ztogammagamma$ decays provides significant constraints in this range (and indeed up to the $Z$-mass). We also discuss the sensitivities of LHC and future colliders. Particularly the LHC shows promising sensitivity in searching for a pseudo-scalar with $4 lesssim m_a lesssim 60$ GeV in the channel $pp to 3 gamma$ with $m_{3gamma}approx m_{Z}$.
We study charged lepton flavor violation associated with a light leptophilic axion-like particle (ALP), $X$, at the $B$-factory experiment Belle II. We focus on production of the ALP in the tau decays $tau to X l$ with $l=e,mu$, followed by its decay
We propose a new collider probe for axion-like particles (ALPs), and more generally for pseudo-Goldstone bosons: non-resonant searches which take advantage of the derivative nature of their interactions with Standard Model particles. ALPs can partici
We present a novel data-driven method for determining the hadronic interaction strengths of axion-like particles (ALPs) with QCD-scale masses. Using our method, it is possible to calculate the hadronic production and decay rates of ALPs, along with m
We explore the sensitivity of photon-beam experiments to axion-like particles (ALPs) with QCD-scale masses whose dominant coupling to the Standard Model is either to photons or gluons. We introduce a novel data-driven method that eliminates the need
Axion-like particles (ALPs) are predicted by many extensions of the Standard Model (SM). When ALP mass lies in the range of MeV to GeV, the cosmology and astrophysics will be largely irrelevant. In this work, we investigate such light ALPs through th