ﻻ يوجد ملخص باللغة العربية
The ILC Technical Design Report documents the design of a 500 GeV linear collider, but does not specify the center-of-mass energy steps of operation for the collider. The ILC Parameters Joint Working Group has studied possible running scenarios, including a realistic estimate of the real time accumulation of integrated luminosity based on ramp-up and upgrade processes, and considered the evolution of the physics outcomes. These physics goals include Higgs precision measurements, top quark measurements and searches for new physics. We present an optimized operating scenario and the anticipated evolution of the precision of the ILC measurements.
The ILC Technical Design Report documents the design for the construction of a linear collider which can be operated at energies up to 500 GeV. This report summarizes the outcome of a study of possible running scenarios, including a realistic estimat
We evaluate the measurement accuracy of the branching ratio of $h to tau ^+ tau ^-$ at $sqrt{s} = 250$ GeV and 500 GeV at the ILC with the ILD detector simulation. For the $sqrt{s} = 250$ GeV, we assume the Higgs mass of $M_h = 120$ GeV, branching ra
This document is the final report by the Committee on the Scientific Case of the ILC Operating at 250 GeV as a Higgs Factory. This committee was commissioned by the Japan Association of High Energy Physicists. The purpose of this committee is to inve
We evaluate the expected measurement accuracy of the branching ratio of the Standard Model Higgs boson decaying into tau lepton pairs $h to tau ^+ tau ^-$ at the ILC with a center-of-mass energy of $sqrt{s} = 500$ GeV with a full simulation of the IL
Precise measurements of electroweak processes at the International Linear Collider (ILC) will provide unique opportunities to explore new physics beyond the Standard Model. Fermion pair production events are sensitive to new interactions involving a