ﻻ يوجد ملخص باللغة العربية
Precise measurements of electroweak processes at the International Linear Collider (ILC) will provide unique opportunities to explore new physics beyond the Standard Model. Fermion pair production events are sensitive to new interactions involving a new heavy gauge boson or an electroweak interacting massive particle (EWIMP).We studied the mass reach of new particles at the ILC with $sqrt{s}=250$ GeV by using $e^+ e^-to e^+ e^-$and $e^+ e^-to mu^+ mu^-$ events. We show that a mass reach for BSM particles can be determined with 90% confidence level using a toy Monte Carlo technique.
Precise measurements of electroweak processes at the International Linear Collider (ILC) will provide unique opportunities to explore new physics beyond the Standard Model. Fermion pair productions are sensitive to a new contact interaction or a new
We consider a gauged U(1)$_{B-L}$ (Baryon-minus-Lepton number) extension of the Standard Model (SM), which is anomaly-free in the presence of three Right-Handed Neutrinos (RHNs). Associated with the U(1)$_{B-L}$ symmetry breaking the RHNs acquire the
We evaluate the measurement accuracy of the branching ratio of $h to tau ^+ tau ^-$ at $sqrt{s} = 250$ GeV and 500 GeV at the ILC with the ILD detector simulation. For the $sqrt{s} = 250$ GeV, we assume the Higgs mass of $M_h = 120$ GeV, branching ra
This document is the final report by the Committee on the Scientific Case of the ILC Operating at 250 GeV as a Higgs Factory. This committee was commissioned by the Japan Association of High Energy Physicists. The purpose of this committee is to inve
We study the $h gamma Z$ coupling, which is a loop induced coupling in the Standard Model (SM), to probe new physics. In a global fit based on the SM Effective Field Theory, measurement of the SM $h gamma Z$ coupling can provide a very useful constra