ﻻ يوجد ملخص باللغة العربية
Among colossal magnetoresistive manganites the prototypical ferromagnetic manganite La$_{0.7}$Sr$_{0.3}$MnO$_{3}$ has a relatively small magnetoresistance, and has been long assumed to have only weak electron-lattice coupling. Here we report that La$_{0.7}$Sr$_{0.3}$MnO$_{3}$ has strong electron-phonon coupling: Our neutron and x-ray scattering experiments show strong softening and broadening of transverse acoustic phonons on heating through the Curie temperature T$_C$ = 350 K. Simultaneously, we observe two phases where metallic resistivity and polarons coexist. The ferromagnetic polaronic metal phase between 200 K and T$_C$ is characterized by quasielastic scattering from dynamic CE-type polarons with the relatively short lifetime of $mathbf{tau}approx 1,rm{ps}$. This scattering is greatly enhanced above T$_C$ in the paramagnetic polaronic metal phase. Our results suggest that the strength of magnetoresistance in manganites scales with the inverse of polaron lifetime, not the strength of electron-phonon coupling.
Using ultrafast optical spectroscopy, we show that polaronic behavior associated with interfacial antiferromagnetic order is likely the origin of tunable magnetotransport upon switching the ferroelectric polarity in a La$_{0.7}$Ca$_{0.3}$MnO$_{3}$/Bi
Using polarized neutron reflectometry (PNR), we observe an induced magnetization of 75$pm$ 25 kA/m at 10 K in a La$_{0.7}$Sr$_{0.3}$MnO$_3$ (LSMO)/BiFeO$_3$ superlattice extending from the interface through several atomic layers of the BiFeO$_3$ (BFO
A field-induced crossover is observed in the resistivity and magnetization (M) of a La(0.7)Pb(0.3)MnO(3) single crystal. The field-dependence of the resistivity and M suggests that a small spin-canted species with mean-field-like interactions dominat
We report on first principles calculations of the electronic structure of La$_{0.7}$Sr$_{0.3}$MnO$_{3}$/SrTiO$_{3}$ junction with two possible types of interface terminations. We find that the La$_{0.7}$Sr$_{0.3}$O/TiO$_{2}$ interface preserves the i
The viscous Gilbert damping parameter governing magnetization dynamics is of primary importance for various spintronics applications. Although, the damping constant is believed to be anisotropic by theories. It is commonly treated as a scalar due to