ﻻ يوجد ملخص باللغة العربية
The viscous Gilbert damping parameter governing magnetization dynamics is of primary importance for various spintronics applications. Although, the damping constant is believed to be anisotropic by theories. It is commonly treated as a scalar due to lack of experimental evidence. Here, we present an elaborate angle dependent broadband ferromagnetic resonance study of high quality epitaxial La$_{0.7}$Sr$_{0.3}$MnO$_{3}$ films. Extrinsic effects are suppressed and we show convincing evidence of anisotropic damping with twofold symmetry at room temperature. The observed anisotropic relaxation is attributed to the magnetization orientation dependence of the band structure. In addition, we demonstrated that such anisotropy can be tailored by manipulating the stain. This work provides new insights to understand the mechanism of magnetization relaxation.
Magnetocaloric properties of an inhomogeneous magnetic system of a 7.6 nm La${}_{0.7}$Sr${}_{0.3}$MnO${}_{3}$ consisting of superparamagnetic (SPM) with blocking temperature ( $T_B$ = 240 K) and ferromagnetic (FM) phases ( $T_C$ = 290 K) is studied b
We report on first principles calculations of the electronic structure of La$_{0.7}$Sr$_{0.3}$MnO$_{3}$/SrTiO$_{3}$ junction with two possible types of interface terminations. We find that the La$_{0.7}$Sr$_{0.3}$O/TiO$_{2}$ interface preserves the i
An emerging area in condensed matter physics is the use of multilayered heterostructures to enhance ferroelectricity in complex oxides. Here, we demonstrate that optically pumping carriers across the interface between thin films of a ferroelectric (F
We report an enhanced magnetoelastic contribution to the Gilbert damping in highly magnetostrictive Fe$_{0.7}$Ga$_{0.3}$ thin films. This effect is mitigated for perpendicular-to-plane fields, leading to a large anisotropy of the Gilbert damping in a
The magnetic dead layers in films a few nanometers thick are investigated for La$_{0.7}$Sr$_{0.3}$MnO$_3$ on (001)-oriented SrTiO$_3$ (STO), LaAlO$_3$ (LAO) and (LaAlO$_3$)$_{0.3}$(Sr$_2$TaAlO$_6$)$_{0.7}$ (LSAT) substrates. An anomalous moment found