ﻻ يوجد ملخص باللغة العربية
We report the design and test of Reciprocal Quantum Logic shift-register yield vehicles consisting of up to 72,800 Josephson junction devices per die, the largest digital superconducting circuits ever reported. Multiple physical layout styles were matched to the MIT Lincoln Laboratory foundry, which supports processes with both four and eight metal layers and minimum feature size of 0.5 {mu}m. The largest individual circuits with 40,400 junctions indicate large operating margins of $pm$20% on AC clock amplitude. In one case the data were reproducible to the accuracy of the measurement, $pm$1% across five thermal cycles using only the rudimentary precautions of passive mu-metal magnetic shielding and a controlled cool-down rate of 3 mK/s in the test fixture. We conclude that with proper mitigation techniques, flux-trapping is no longer a limiting consideration for very-large-scale-integration of superconductor digital logic.
Microwave circulators play an important role in quantum technology based on superconducting circuits. The conventional circulator design, which employs ferrite materials, is bulky and involves strong magnetic fields, rendering it unsuitable for integ
Intrinsic Josephson junctions in high-temperature superconductor Bi2Sr2CaCu2O8 are known for their capability to emit high-power terahertz photons with widely tunable frequencies. Hotspots, as inhomogeneous temperature distributions across the juncti
We propose a transistor-like circuit including two serially connected segments of a narrow superconducting nanowire joint by a wider segment with a capacitively coupled gate in between. This circuit is made of amorphous NbSi film and embedded in a ne
In this paper, we will understand that the development of the Digital Video Broadcasting to a Handheld (DVB-H) standard makes it possible to deliver live broadcast television to a mobile handheld device. Building upon the strengths of the Digital Vid
We describe a new type of scanning probe microscope based on a superconducting quantum interference device (SQUID) that resides on the apex of a sharp tip. The SQUID-on-tip is glued to a quartz tuning fork which allows scanning at a tip-sample separa