ترغب بنشر مسار تعليمي؟ اضغط هنا

Scanning superconducting quantum interference device on a tip for magnetic imaging of nanoscale phenomena

124   0   0.0 ( 0 )
 نشر من قبل Amit Finkler
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a new type of scanning probe microscope based on a superconducting quantum interference device (SQUID) that resides on the apex of a sharp tip. The SQUID-on-tip is glued to a quartz tuning fork which allows scanning at a tip-sample separation of a few nm. The magnetic flux sensitivity of the SQUID is 1.8 {mu}_0/Hz^{1/2} and the spatial resolution is about 200 nm, which can be further improved. This combination of high sensitivity, spatial resolution, bandwidth, and the very close proximity to the sample provides a powerful tool for study of dynamic magnetic phenomena on the nanoscale. The potential of the SQUID-on-tip microscope is demonstrated by imaging of the vortex lattice and of the local AC magnetic response in superconductors.



قيم البحث

اقرأ أيضاً

Vortices play a crucial role in determining the properties of superconductors as well as their applications. Therefore, characterization and manipulation of vortices, especially at the single vortex level, is of great importance. Among many technique s to study single vortices, scanning tunneling microscopy (STM) stands out as a powerful tool, due to its ability to detect the local electronic states and high spatial resolution. However, local control of superconductivity as well as the manipulation of individual vortices with the STM tip is still lacking. Here we report a new function of the STM, namely to control the local pinning in a superconductor through the heating effect. Such effect allows us to quench the superconducting state at nanoscale, and leads to the growth of vortex-clusters whose size can be controlled by the bias voltage. We also demonstrate the use of an STM tip to assemble single quantum vortices into desired nanoscale configurations.
We propose a transistor-like circuit including two serially connected segments of a narrow superconducting nanowire joint by a wider segment with a capacitively coupled gate in between. This circuit is made of amorphous NbSi film and embedded in a ne twork of on-chip Cr microresistors ensuring a sufficiently high external electromagnetic impedance. Assuming a virtual regime of quantum phase slips (QPS)in two narrow segments of the wire, leading to quantum interference of voltages on these segments, this circuit is dual to the dc SQUID. Our samples demonstrated appreciable Coulomb blockade voltage (analog of critical current of the SQUIDs) and periodic modulation of this blockade by an electrostatic gate (analog of flux modulation in the SQUIDs). The model of this QPS transistor is discussed.
We report on the fabrication and electrical transport properties of superconducting quantum interference devices (SQUIDs) made from a (Bi_{1-x}Sb_x)_2Se_3 topological insulator (TI) nanoribbon (NR) connected with Pb0.5In0.5 superconducting electrodes . Below the transition temperature of the superconducting Pb0.5In0.5 electrodes, periodic oscillations of the critical current are observed in the TI NR SQUID under a magnetic field applied perpendicular to the plane owing to flux quantization. Also the output voltage modulates as a function of the external magnetic field. Moreover, the SQUID the SQUID shows a voltage modulation envelope, which is considered to represent the Fraunhofer-like patterns of each single junction. These properties of the TI NR SQUID would provide a useful method to explore Majorana fermions.
121 - S. Karan , H. Huang , C. Padurariu 2021
A single spin in a Josephson junction can reverse the flow of the supercurrent. At mesoscopic length scales, such $pi$-junctions are employed in various instances from finding the pairing symmetry to quantum computing. In Yu-Shiba-Rusinov (YSR) state s, the atomic scale counterpart of a single spin in a superconducting tunnel junction, the supercurrent reversal so far has remained elusive. Using scanning tunneling microscopy (STM), we demonstrate such a 0 to $pi$ transition of a Josephson junction through a YSR state as we continuously change the impurity-superconductor coupling. We detect the sign change in the critical current by exploiting a second transport channel as reference in analogy to a superconducting quantum interference device (SQUID), which provides the STM with the required phase sensitivity. The measured change in the Josephson current is a signature of the quantum phase transition and allows its characterization with unprecedented resolution.
Within the Ginzburg-Landau model we study the critical field and temperature enhancement for crossing superconducting channels formed either along the sample edges or domain walls in thin-film magnetically coupled superconducting - ferromagnetic bila yers. The corresponding Cooper pair wave function can be viewed as a hybridization of two order parameter (OP) modes propagating along the boundaries and/or domain walls. Different momenta of hybridized OP modes result in the formation of vortex chains outgoing from the crossing point of these channels. Near this crossing point the wave functions of the modes merge giving rise to the increase in the critical temperature for a localized superconducting state. The origin of this critical temperature enhancement caused by the wave function squeezing is illustrated for a limiting case of approaching parallel boundaries and/or domain walls. Using both the variational method and numerical simulations we have studied the critical temperature dependence and OP structure vs the applied magnetic field and the angle between the crossing channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا